K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

H A B C D E F G P Q M a) A,H,E,D nằm trên đường tròn đường kính AD vì góc AHD và AED vuông. 

b) Hai tam giác vuông AHP và PED đồng dạng vì có góc AHP = góc PED = 90 độ; góc APH = góc DPE vì đối đỉnh.

Vậy \(\frac{HA}{PA}=\frac{DE}{DP}\)

Nên HA.DP = PA.DE 

b, Vì DF//AB nên \(\widehat{DHC}=\widehat{BAC}\)(đồng vị)

mà \(\widehat{BAC}=\frac{1}{2}\widehat{BOC}=\widehat{DOC}\)(góc nội tiếp và góc ở tâm)

\(\Rightarrow\widehat{DOC}=\widehat{DHC}\)hay tứ giác DOHC nội tiếp

\(\Rightarrow\widehat{DHO}=\widehat{DCO}=90^0\)\(\Rightarrow OH\perp DF\)

câu c tí nữa làm :P

c, Từ a, b => 5 điểm B,O,H,C,D cùng nằm trên đường tròn đường kính OD

Vì tứ giác BHCD nội tiếp \(\Rightarrow ID.IH=IB.IC\)

Vì tứ giác BECF nội tiếp \(\Rightarrow IE.IF=IB.IC\)

\(\Rightarrow ID.IH=IE.IF\)

 
10 tháng 5 2019

mình hỏi rồi nè

Bài 1 : Trên nửa đưởng tròn tâm O đường kính AB lấy điểm C. Kẻ tiếp tuyến Ax với (O) . Tia BC cắt Ax ở D và tia phân giác góc DAC cắt nửa đường tròn tại E và cắt BC tại F. Hai dây AC và BE cắt nhau tại Ha/ CM tứ giác CHEF nội tiếpb/ CM tam giác ABF cânc/ Gọi I là trung điểm của FH. CM IE = IC và OI vuông góc với CEBài 2 : Cho hai đường tròn (O) và (O') cắt nhau tại hai điểm A, B phân biệt. Đường...
Đọc tiếp

Bài 1 : Trên nửa đưởng tròn tâm O đường kính AB lấy điểm C. Kẻ tiếp tuyến Ax với (O) . Tia BC cắt Ax ở D và tia phân giác góc DAC cắt nửa đường tròn tại E và cắt BC tại F. Hai dây AC và BE cắt nhau tại H

a/ CM tứ giác CHEF nội tiếp

b/ CM tam giác ABF cân

c/ Gọi I là trung điểm của FH. CM IE = IC và OI vuông góc với CE

Bài 2 : Cho hai đường tròn (O) và (O') cắt nhau tại hai điểm A, B phân biệt. Đường thẳng OA cắt (O), (O') lần lượt tại hai điểm C, D. Đường thẳng O'A cắt (O), (O') lần lượt tại hai điểm E, F 
a/ CM 3 đường thẳng AB, CE và DF đồng quy tại I 
b/ tứ giác BEFI nội tiếp
c/ Cho PQ là tiếp tuyến chung của (O), (O') ( P thuộc (O) và Q thuộc (O')) CM đường thẳng AB đi qua trung điểm của đoạn thẳng PQ

ThíchHiển thị thêm cảm xúc

Bình luậnChia sẻ

0