Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC nhọn (AB<AC)nội tiếp (O;R). Ly điểm M tuỳ ý trên cung nhỏ BC, kẻ MP vg góc AB, MR vg góc AC và PR cắt BC tai Q
- Cm: tg APMR noi tiep
- Cm: MQ vg goc BC va PM.CM=BM.MR
- Kẻ đg cao AD va CE cua Tam giac ABC cắt nhau tai H. Đg kính BK cat DE tai I. Cm: tg DCKI noi tiep dg tron
- Ke CS vg góc AM tai S. Cm: PQ=ES
ai tích mình tích lại
1: Xét tứ giác ABOC có
\(\widehat{OBA}\) và \(\widehat{OCA}\) là hai góc đối
\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
2:
a) Cm ΔAOE cân tại E
Xét (O) có
AB là tiếp tuyến có B là tiếp điểm(gt)
AC là tiếp tuyến có C là tiếp điểm(gt)
Do đó: OA là tia phân giác của \(\widehat{BOC}\)(Tính chất hai tiếp tuyến cắt nhau)
\(\Leftrightarrow\widehat{BOA}=\widehat{COA}\)
mà \(\widehat{BOA}+\widehat{BAO}=90^0\)(ΔBOA vuông tại B)
nên \(\widehat{COA}=\widehat{BAO}\)
\(\Leftrightarrow\widehat{EOA}=\widehat{BAO}\)
mà \(\widehat{BAO}+\widehat{EAO}=90^0\)
nên \(\widehat{EOA}=\widehat{EAO}\)
Xét ΔEOA có \(\widehat{EOA}=\widehat{EAO}\)(cmt)
nên ΔEOA cân tại E(Định lí đảo của tam giác cân)