Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Pytago vào tam giác vuông AHC ta có :
\(AC^2=AH^2+HC^2\)
\(AC^2=12^2+16^2\)
\(AC^2=144+256\)
\(AC^2=400\)
\(AC=\sqrt{400}\)
\(AC=20\left(cm\right)\)
Áp dụng định lí Pytago vào tam giác vuông AHB ta có :
\(AB^2=AH^2+BH^2\)
\(AB^2=12^2+5^2\)
\(AB^2=144+25\)
\(AB^2=169\)
\(AB=\sqrt{169}\)
\(AB=13\left(cm\right)\)
Chu vi tam giác ABC là:
\(AB+AC+BC=AB+AC+\left(BH+HC\right)=13+20+\left(5+16\right)=13+20+21=54\left(cm\right)\)
theo định lí pitago trong
tam giác vuông ABH ta có \(AB^2=BH^2+AH^2=5^2+12^2=169\)
=> AB=13
tam giác vuông AHC có : \(AC^2=AH^2+HC^2=12^2+16^2=400\)
=> AC=20
=> chu vi tam giác ABC là AB+BC+AC=13+5+16+20=54
Áp dụng định lí Py-ta-go vào tgABH ta được:
\(AB^2=AH^2+BH^2\)
Mà AH=12;BH=5
\(\Rightarrow AB^2=12^2+5^2\)
\(\Rightarrow AB^2=144+25=169\)
\(\Rightarrow AB=13\left(cm\right)\left(doAB>0\right)\)
Áp dụng định lí Py-ta-go vào tg ACH ta được:
Theo gt ta có : AH vuông góc với BC
=> \(\Delta\) AHB và \(\Delta\) AHC là \(\Delta\) vuông
Xét : \(\Delta\) AHB có : AH\(^2\)+ HB\(^2\) = AB\(^2\)
mà : AH = 12cm, HB = 5cm
=> AB\(^2\)= 12\(^2\)+ 5\(^2\)
=> AB\(^2\)= 144 + 25
=> AB\(^2\)= 169
=> AB = 13 cm (1)
Tương tự ta cũng có :
=> AC\(^2\)= 12\(^2\)+ 16\(^2\)
=> AB\(^2\)= 144 + 256
=> AB\(^2\)= 400
=> AB = 20 cm (2)
Mặt khác : BC = BH + CH
=> BC = 5 + 16 = 21cm (3)
Từ : (1), (2), (3) => chu vi tam giác ABC = 13 + 20 + 21 = 54 cm
A) tam giác ABH vuông tại A . Theo định lí Py-Ta Go ta có
\(AH^2+BH^2=AB^2\)
THAY BH = 5CM , AH = 12 CM , ta được
\(12^2+5^2=AB^2\)
\(AB^2\)= 144+25 =169
AB =\(\sqrt{169}\)=13 CM
SORRY MÌNH CHỈ GIẢI ĐƯỢC CÂU A THÔI
MONG BẠN THÔNG CẢM
a, Xét tam giác AHB, có ^AHB = 900
Áp dụng định lí Py ta go ta có :
\(AB^2=AH^2+HB^2=144+25=169\)
\(\Rightarrow AB^2=169\Rightarrow AB=13\)cm
b, Xét tam giác ACH, có ^AHC = 900
Áp dụng định lí Py ta go ta có :
\(AC^2=AH^2+CH^2\Rightarrow CH^2=AC^2-AH^2\)
\(=400-144=256\Rightarrow CH=\sqrt{256}=16\)cm
Vậy BC = CH + HB = 16 + 5 = 21 cm
Chu vi tam giác ABC là :
\(P_{\Delta ABC}=20+21+13=54\)cm
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AB^2=12^2+16^2=400\)
hay AB=20(cm)
Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow HC^2=AC^2-AH^2=20^2-12^2=256\)
hay HC=16(cm)
Ta có: BH+HC=BC(H nằm giữa B và C)
nên BC=16+16=32(cm)
Chu vi của tam giác ABC là:
\(C_{ABC}=AB+BC+AC=20+32+20=72\left(cm\right)\)
Lời giải:
Áp dụng định lý Pitago cho tam giác $AHC$ vuông tại $H$:
$HC=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=16$ (cm)
Áp dụng định lý Pitago cho tam giác $AHB$ vuông tại $H$:
$AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+16^2}=20$ (cm)
Chu vi tam giác $ABC$:
$AB+BC+AC=AB+BH+CH+AC=20+16+16+20=72$ (cm)
Áp dụng định lý Pytago cho 2 tam giác ABH và ACH ta có AB=13 và HC=16
suy ra chu vi ABC= AC+AB+BH+CH=20+13+5+16=54