Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ∆ vuông BKC ta có :
BM = MC
=> KM = \(\frac{1}{2}\)BC
=> KM = BM = MC (1) ( Tính chất ∆ vuông )
Xét ∆ vuông CIB ta có :
BM = MC
=> IM = \(\frac{1}{2}\)BC
=> IM = BM = CM (2)
Từ (1) và (2) ta có :
MB = MK = MI = MC
=> KM = MI
=> ∆KIM cân tại M
Hình vn tự vẽ hen :)
Cmr: Tam giác ABC có góc nhọc BI ta nối góc BI vào CK
Vẽ một hình tam giác với điểm là A góc là H ta có hình tam giác AH
Vậy suy ra:
=> Ta có 2 hình tam giác vuông của 1 hình ABC (Tam giác nhỏ)
(1) AHB (2)BID ta có:
BD=AB (gt)
=> K là một trung điểm ta đặt hai trung điểm có:
KIB=KCB (trung điểm góc) (đcmlg)
Tam giác AHB = ACD ( cạnh huyền của tam giác ABC)
Xét hai góc KIB và KCB ( Cùng phụ góc hai ) Mik đã đánh giấu
Nên ta còn:AC=AB
Qua chứng minh trên ta rút ra kết luận
(BC + HC +IB + KCB =EK (đpcm)
~Study well~ :)
a: Xét ΔHKB vuông tại K và ΔHDC vuông tại D có
góc KHB=góc DHC
=>ΔKHB đồng dạng với ΔDHC
Xet ΔCDB vuông tại D và ΔCEA vuông tại E có
góc C chung
=>ΔCDB đồng dạng với ΔCEA
=>CD/CE=CB/CA
=>CD*CA=CE*CB
b: góc BKC=góc BDC=90 độ
=>BKDC nội tiếp
=>góc SBK=góc SDC
Bài 1:
a: Ta có: ΔBKC vuông tại K
mà KM là đường trung tuyến
nên KM=BC/2(1)
Ta có: ΔBHC vuông tại H
mà HM là đường trung tuyến
nên HM=BC/2(2)
Từ (1)và (2) suy ra MH=MK
hay ΔMHK cân tại M
b: Kẻ MN vuông góc với HK
=>N là trung điểm của HK
Xét hình thang CBDE có
M là trung điểm của BC
MN//DB//EC
DO đó: N là trung điểm của DE
=>DK=HE
a) Chứng minh : BHCK là hình bình hành
Xét tứ giác BHCK có : MH = MK = HK/2
MB = MI = BC/2
Suy ra : BHCK là hình bình hành
b) BK vuông góc AB và CK vuông góc AC
Vì BHCK là hình bình hành ( cmt )
Suy ra : BK // HC và CK // BH ( tính chất hình bình hành )
mà CH vuông góc AB = F và BH vuông góc AC = E ( gt )
Suy ra : BK vuông góc AB và CK vuông góc AC ( Từ vuông góc đến // )
c) Chứng minh : BIKC là hình thang cân
Vì I đối xứng với H qua BC nên BC là đường trung bình của HI
Mà M thuộc BC Suy ra : MH = MI ( tính chất đường trung trực )
mà MH = MK = HK/2 (gt)
Suy ra : MI = MH = MK = 1/2 HC
Suy ra : Tam giác HIK vuông góc tại I
mà BC vuông góc HI (gt)
Suy ra : IC // BC
Suy ra : BICK là hình thang (1)
Ta có : BC là đường trung trực của HI (cmt)
Suy ra : CI = CH
Tiếp ý c
mà CH = BK ( vì BKCH là hình bình hành)
Suy ra : BK = CI (2)
Từ ( 1) và (2) Suy ra : BICK là hình thang cân (dấu hiệu nhận biết )
d) Giả sử GHCK là hình thang cân
Suy ra : Góc HCK = Góc GHC
mà góc HCK + góc C1 = 90 độ
góc GHC + góc C2 = 90 độ
Suy ra : Góc C1= góc C2
Suy ra : CF là đường cao đồng thời là đường phân giác của tam giác ABC
Suy ra : Tam giác ABC cân tại C