K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2019

A B C D E M N

a) Xét \(\Delta\)BDC vuông tại D  ( Vì BD là đường cao tam giác ABC )

có: M là trung điểm BC ( giả thiết)

=> DM là đường trung tuyến 

=> \(DM=\frac{1}{2}BC\)(1)

b) Tương tự EM là đường trung tuyến của \(\Delta\)vuông BEC 

=> \(EM=\frac{1}{2}BC\) (2)

Từ (1) ; (2) => DM = EM

=>  \(\Delta\)DME cân tại M

c) \(\Delta\)DME cân tại M ( theo câu b)

có N là trung điểm của DE nên MN là đường trung tuyến của \(\Delta\)DME cân.

=> MN là đường cao. ( Trong tam giác cân đường trung tuyến đồng thời là đường cao , phân giác ,...)

23 tháng 9 2019

Nếu c/m được DM=1/2(BC) => BD=BC => vô lý vì trong tam giác vuông BCD có cạnh huyền BC = cạnh góc vuông BD à? => xem lại đề bài

23 tháng 9 2019

Tham khảo đề bài và bài làm tại link:

Câu hỏi của Lan nhi Duong nguyễn - Toán lớp 8 - Học toán với OnlineMath

23 tháng 9 2019

Em sai đề. Tham khảo đề và bài làm tại link: Câu hỏi của Lan nhi Duong nguyễn - Toán lớp 8 - Học toán với OnlineMath

11 tháng 7 2018

ai tích mình mình tích lại cho

NV
22 tháng 12 2020

1.

a. CN và BM cùng vuông góc DE nên CN//BM

\(\Rightarrow\) BMNC là hình thang vuông tại M và N

b. Theo giả thiết BD vuông góc CA \(\Rightarrow\Delta BDC\) vuông tại D

\(\Rightarrow DO\) là trung tuyến ứng với cạnh huyền BC \(\Rightarrow DO=\dfrac{1}{2}BC\)

Tương tự trong tam giác vuông BEC thì EO là trung tuyến ứng với cạnh huyền

\(\Rightarrow EO=\dfrac{1}{2}BC\Rightarrow DO=EO\Rightarrow\) tam giác cân tại O

c. Tam giác DEO cân tại O, mà P là trung điểm DE \(\Rightarrow OP\) là trung tuyến đồng thời là đường cao

\(\Rightarrow OP\perp DE\) \(\Rightarrow OP//CN//BM\)

Mà O là trung điểm BC \(\Rightarrow OP\) là đường trung bình hình thang BMNC

\(\Rightarrow OP=\dfrac{CN+BM}{2}\)

2. Đặt biểu thức là A

Với \(p=2\) ko thỏa mãn

Với \(p=3\Rightarrow A=71\) là SNT

Với \(p>3\) do p là SNT nên p chỉ có 2 dạng \(p=3k+1\) hoặc \(3k+2\)

- Với \(p=3k+1\Rightarrow p^3\) chia 3 dư 1, \(p^2\) chia 3 dư 1, \(11p=9p+2p\) chia 3 dư 2

\(\Rightarrow A\) chia 3 dư 1+1+2+2=6 chia hết cho 3 (ko là SNT) loại

- Với \(p=3k+2\) tương tự, \(p^3\) chia 3 dư 2, \(p^2\) chia 3 dư 1, \(11p\) chia 3 dư 1

\(\Rightarrow\) A chia 3 dư 2+1+1+2=6 vẫn chia hết cho 3 (loại)

Vậy \(p=3\) là giá trị duy nhất thỏa mãn

22 tháng 12 2020

Em cảm ơn anh nhiều ạ . Anh có thể cho e xin cách làm bài 2 được k ạ