K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2021

Xét ∆MDB vuông tại M và ∆NDC vuông tại N có:

BD = DC(GT)

^ADB = ^ADC (đối đỉnh)

=> ∆MDB=∆NDC (ch-gn)

=> ^MBD = ^NCD (2 góc tương ứng)

Hay ^OBH = ^ICK

Xét ∆ADH vuông tại H và ∆EDK vuông tại K có:

AD = ED.

^ADH = ^EDK (đối đỉnh)

=>∆ADH=∆EDK (ch-gn)

=> DH = DK (2 cạnh t.ứ)

=> BD - DH = CD - DK.

=> BH = CK.

Tự cm : ∆KIC = ∆HOB (g.c.g)

=> KI = HO (2 cạnh t.ứ)

Tự cm ∆KID = ∆HOD (c.g.c)

=> ^KDI = ^HDO (2 góc t.ứ)

Mà ^KDI + ^IDB = 180°

=> ^BDO+^IDB=^IDO=180°

=> Đpcm

 

 

 

 

 

 

 

 

 

18 tháng 12 2021

a: Xét ΔABD và ΔECD có 

DA=DE

\(\widehat{ADB}=\widehat{EDC}\)

DB=DC

Do đó: ΔABD=ΔECD

18 tháng 12 2021

a: Xét ΔABD và ΔECD có

DA=DE

\(\widehat{ADB}=\widehat{EDC}\)

DB=DC

Do đó: ΔABD=ΔECD

18 tháng 12 2021

?

18 tháng 12 2021

a: Xét ΔABD và ΔECD có 

DA=DE

\(\widehat{ADB}=\widehat{EDC}\)

DB=DC

Do đó: ΔABD=ΔECD

18 tháng 12 2021

câu a,b,c đi

15 tháng 12 2019

Bạn có thể tự vẽ hình chứ ? Tại hình hơi rối nên mình lười vẽ =)))
a) Xét ∆ABD và ∆CED có :
DA = DC (D là trung điểm của AC)
∠ADB = ∠CDE (2 góc đối đỉnh)
DB = DE (GT)
=> ∆ABD = ∆CED (c.g.c)
=> ∠ABD = ∠CED (2 góc tương ứng)
    Mà 2 góc này ở vị trí so le trong
=> AB // CE (DHNB)
b) Ta có : AF ⊥ BD (GT)
    Mà CG ⊥ DE (GT)
=> AF // CG (Tính chất)
=> ∠DAF = ∠DCG (2 góc so le trong) (1)
Xét ∆ADF và ∆CDG có :
∠DAF = ∠DCG (Theo (1))
DA = DC (D là trung điểm của AC)
∠ADF = ∠CDG (2 góc đối đỉnh)
=> ∆ADF = ∆CDG (g.c.g)
=> DF = DG (2 cạnh tương ứng)
c) Mình cũng có chứng minh thẳng hàng mấy lần rồi nhưng nhìn hình thì mình không tìm được các yếu tố có thể chứng minh nên bạn nhờ ai khác nhé.

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng


Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF


Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE


Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0