K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2023

a) \(\Delta ABE,\Delta ACF\) có \(\widehat{A}\) chung và \(\widehat{AEB}=\widehat{AFC}\left(=90^o\right)\) nên suy ra \(\Delta ABE~\Delta ACF\left(g.g\right)\) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{AE}{AF}\Rightarrow AB.AF=AC.AE\).

b) Từ \(AB.AF=AC.AE\Rightarrow\dfrac{AE}{AB}=\dfrac{AF}{AC}\). Từ đó suy ra \(\Delta AEF~\Delta ABC\left(c.g.c\right)\) \(\Rightarrow\widehat{AFE}=\widehat{ACB}\)

c) Xét tam giác AEF có \(C\in AE,B\in AF,K\in EF\) và \(K,B,C\) thẳng hàng nên áp dụng định lý Menelaus, ta có \(\dfrac{KF}{KE}.\dfrac{CE}{CA}.\dfrac{BA}{BF}=1\)  (1).

 Mặt khác, cũng trong tam giác AEF, có \(C\in AE,B\in AF,I\in EF\) và AI, EB, FC đồng quy nên theo định lý Ceva, \(\dfrac{IF}{IE}.\dfrac{CE}{CA}.\dfrac{BA}{BF}=1\)   (2).

Từ (1) và (2), suy ra \(\dfrac{KF}{KE}=\dfrac{IF}{IE}\Leftrightarrow KF.IE=KE.IF\)

31 tháng 7 2023

\(\dfrac{ }{ }\)

11 tháng 3 2023

hình tự kẻ ạ :3

a)

xét ΔABE và ΔACF có:

\(\left\{{}\begin{matrix}\widehat{A}\left(chung\right)\\\widehat{AFC}=\widehat{AEB}=90^0\left(CF\perp AB;BE\perp AC\right)\end{matrix}\right.\Rightarrow\Delta ABE\sim\Delta ACF\left(g.g\right)\)

\(\Rightarrow\dfrac{AC}{AB}=\dfrac{AF}{AE}\Leftrightarrow AC.AE=AB.AF\)

 

11 tháng 3 2023

ý b hình như sai đề r ạ =))

30 tháng 4 2019

a, Xét tgABE và tgACF có:

góc AEB = góc CFA = 90o 

góc BAC chung

Từ 2 điều trên => tgABE đồng dạng tgACF (g.g)

=> AB/AC = AE/AF (các cặp cạnh tương ứng)

=> AB.AF = AC.AE

30 tháng 4 2019

xét tam giác ABE và tam giác ACF có : 

góc AEB = góc AFC = 90 do ...

góc CAB chung

=> tam giác ABE ~ tam giác ACF (g.g)

=> AB/AC = AE/AF

=> AB.AF = AC.AE

2 tháng 5 2022

Helps me !!!

 

30 tháng 5 2020

i don ' t know

a) Xét ΔABE vuông tại E và ΔACF vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔABE∼ΔACF(g-g)

b) Ta có: ΔBEC vuông tại E(gt)

nên \(\widehat{EBC}+\widehat{ECB}=90^0\)(hai góc nhọn phụ nhau)

hay \(\widehat{DBH}+\widehat{ACB}=90^0\)(1)

Ta có: ΔDAC vuông tại D(gt)

nên \(\widehat{DAC}+\widehat{DCA}=90^0\)(hai góc nhọn phụ nhau)

hay \(\widehat{DAC}+\widehat{ACB}=90^0\)(2)

Từ (1) và (2) suy ra \(\widehat{DBH}=\widehat{DAC}\)

Xét ΔDBH vuông tại D và ΔDAC vuông tại D có 

\(\widehat{DBH}=\widehat{DAC}\)(cmt)

nên ΔDBH\(\sim\)ΔDAC(g-g)

Suy ra: \(\dfrac{DB}{DA}=\dfrac{DH}{DC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(DB\cdot DC=DH\cdot DA\)(đpcm)

18 tháng 3 2021

A B C D E F H

a)

Xét ΔABE và ΔACF có:

\(\widehat{A}\) chung

\(\widehat{BEA}=\widehat{CFA}\)  (\(=90^0\))

⇒ ΔABE \(\sim\) ΔACF (g.g)       (ĐPCM)

 

 

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc BAE chung

=>ΔABE đồng dạng với ΔACF

=>AB/AC=AE/AF

=>AB/AE=AC/AF và AB*AF=AC*AE

b: Xét ΔABC và ΔAEF có

AB/AE=AC/AF

góc BAC chung

=>ΔABC đồng dạng với ΔAEF