K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2019

Vì BE ⊥ Ax tại E nên tam giác BEM vuông tại E ⇒ BM > BE (quan hệ đường xiên và đường vuông góc)

Vì CF  ⊥ Ax tại F nên tam giác CFM vuông tại F ⇒ CM > CF (quan hệ đường xiên và đường vuông góc)

Khi đó ta có: BM + CM > BE + CF

Mà BM + CM = BC (M thuộc BC)

Do đó: BC > BE + CF hay BE + CF < BC.

Chọn đáp án A

22 tháng 3 2022

Đáp án nào zị?? 

16 tháng 11 2016

Ta có hình vẽ:

x A B C M E F

Δ CFM có: CFM + FMC + MCF = 180o

Δ EMB có: EMB + MBE + BEM = 180o

Mà CFM = MEB = 90o

FMC = BME (đối đỉnh) nên MCF = MBE

Xét Δ MCF và Δ MBE có:

MCF = MBE (cmt)

CM = BM (gt)

FMC = EMB (đối đỉnh)

Do đó, Δ MCF = Δ MBE (c.g.c)

=> CF = BE (2 cạnh tương ứng)

15 tháng 11 2017

g-c-g mà bạn

10 tháng 12 2016

Kí hiệu tam giác là t/g nhé

a) Có: BE _|_ Ax (gt)

CF _|_ Ax (gt)

Suy ra BE // CF (1)

Xét t/g EMB vuông tại E và t/g FMC vuông tại F có:

BM = CM (gt)

EMB = FMC ( đối đỉnh)

Do đó, t/g EMB = t/g FMC ( cạnh huyền và góc nhọn kề)

=> BE = CF (2 cạnh tương ứng) (2)

ME = MF (2 cạnh tương ứng) (3)

(1); (2) và (3) là đpcm

b) Xét t/g EMC và t/g FMB có:

EM = MF (câu a)

EMC = FMB ( đối đỉnh)

CM = BM (gt)

Do đó, t/g EMC = t/g FMB (c.g.c)

=> CE = BF (2 cạnh tương ứng) (4)

ECM = FBM (2 góc tương ứng)

Mà ECM và FBM là 2 góc so le trong

Nên EC // BF (5)

(4) và (5) là đpcm

 

 

20 tháng 4 2017

Hai tam giác vuông BME, CMF có:

BM=MC(gt)

ˆBMEBME^=ˆCMFCMF^(đối đỉnh)

Nên ∆BME=∆CMF(cạnh huyền- góc nhọn).

Suy ra BE=CF.



21 tháng 4 2017

Em phải vẽ hình nhé !

Cho mik hỏi: Câu 1: Cho tam giác nhọn ABC. Vẽ tia Ax nằm trong góc BAC, Ax cắt BC ở M. Gọi E và F theo thứ tự là hình chiếu của B và C trên tia Ax. Hãy so sánh BE+CF với BC A.BE + CF < BC B.BE + CF > BC C.BE + CF = BC Câu 2: Cho ΔABC vuông tại A, M là trung điểm của AC. Gọi D, E lần lượt là hình chiếu của A và C xuống đường thẳng BM. So sánh BD + BE và AB A.BD+ BE < 2AB ...
Đọc tiếp

Cho mik hỏi:

Câu 1:

Cho tam giác nhọn ABC. Vẽ tia Ax nằm trong góc BAC, Ax cắt BC ở M. Gọi E và F theo thứ tự là hình chiếu của B và C trên tia Ax. Hãy so sánh BE+CF với BC A.BE + CF < BC B.BE + CF > BC C.BE + CF = BC Câu 2: Cho ΔABC vuông tại A, M là trung điểm của AC. Gọi D, E lần lượt là hình chiếu của A và C xuống đường thẳng BM. So sánh BD + BE và AB A.BD+ BE < 2AB B.BD +BE>2AB C.BD + BE = 2AB D.BD + BE < AB Câu 3: Cho tam giác ABC có BD, CE là hai đường cao. So sánh BD + CE và AB + AC A.BD+ CE <AB+ AC B.BD+ CE >AB+ AC C.BD+ CE =AB+ AC Câu 4: Cho tam giác ABC vuông tại A. Trên cạnh AB, AC lần lượt lấy các điểm D, E (D, E không trùng với các đỉnh của tam giác ABC). Chọn đáp án đúng nhất? A.DE > BE < BC B.DE < BE > BC C.DE > BE > BC D.DE < BE < BC Câu 5: Cho tam giác nhọn ABC. Vẽ tia Ax nằm trong góc BAC, Ax cắt BC ở M. Gọi E và F theo thứ tự là hình chiếu của B và C trên tia Ax. Tổng độ dài BE và CF lớn nhất bằng độ dài cạnh nào? A.AB B.AC C.BC D.Không bằng cạnh nào Mik cảm ơn mọi người. Mong mọi người giúp. Nếu đc cho mình xin hình vẽ luôn ạ. Thanks
0
Cho mik hỏi: Câu 1: Cho tam giác nhọn ABC. Vẽ tia Ax nằm trong góc BAC, Ax cắt BC ở M. Gọi E và F theo thứ tự là hình chiếu của B và C trên tia Ax. Hãy so sánh BE+CF với BC A.BE + CF < BC B.BE + CF > BC C.BE + CF = BC Câu 2: Cho ΔABC vuông tại A, M là trung điểm của AC. Gọi D, E lần lượt là hình chiếu của A và C xuống đường thẳng BM. So sánh BD + BE và AB A.BD+ BE < 2AB B.BD...
Đọc tiếp

Cho mik hỏi:

Câu 1:

Cho tam giác nhọn ABC. Vẽ tia Ax nằm trong góc BAC, Ax cắt BC ở M. Gọi E và F theo thứ tự là hình chiếu của B và C trên tia Ax. Hãy so sánh BE+CF với BC

A.BE + CF < BC B.BE + CF > BC C.BE + CF = BC

Câu 2: Cho ΔABC vuông tại A, M là trung điểm của AC. Gọi D, E lần lượt là hình chiếu của A và C xuống đường thẳng BM. So sánh BD + BE và AB

A.BD+ BE < 2AB B.BD +BE>2AB C.BD + BE = 2AB D.BD + BE < AB

Câu 3: Cho tam giác ABC có BD, CE là hai đường cao. So sánh BD + CE và AB + AC

A.BD+ CE <AB+ AC B.BD+ CE >AB+ AC C.BD+ CE =AB+ AC

Câu 4: Cho tam giác ABC vuông tại A. Trên cạnh AB, AC lần lượt lấy các điểm D, E (D, E không trùng với các đỉnh của tam giác ABC). Chọn đáp án đúng nhất?

A.DE > BE < BC B.DE < BE > BC C.DE > BE > BC D.DE < BE < BC

Câu 5: Cho tam giác nhọn ABC. Vẽ tia Ax nằm trong góc BAC, Ax cắt BC ở M. Gọi E và F theo thứ tự là hình chiếu của B và C trên tia Ax. Tổng độ dài BE và CF lớn nhất bằng độ dài cạnh nào?

A.AB B.AC C.BC D.Không bằng cạnh nào

Mik cảm ơn mọi người. Mong mọi người giúp. Nếu đc cho mình xin hình vẽ luôn ạ. Thanks

0
19 tháng 12 2016

A B C M x 1 2 E F

19 tháng 12 2016

Ta có hình vẽ trên:

Xét 2 tam giác vuông MBE và tam giác MCF có:

BM = MC (gt)

góc M1 = góc M2 (đối đỉnh)

suy ra tam giác MBE = tam giác MCF (cạnh huyền - góc nhọn)

suy ra BE = CF (2 cạnh tương ứng)

Vậy BE = CF

14 tháng 12 2018

Lời giải:

Giải bài 40 trang 124 Toán 7 Tập 1 | Giải bài tập Toán 7Giải bài 40 trang 124 Toán 7 Tập 1 | Giải bài tập Toán 7

Hai tam giác vuông BME và CMF có

Giải bài 40 trang 124 Toán 7 Tập 1 | Giải bài tập Toán 7

⇒ ΔBME = ΔCMF (cạnh huyền – góc nhọn)

⇒ BE = CF (hai cạnh tương ứng).

Kiến thức áp dụng

+ Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

Giải bài 38 trang 124 Toán 7 Tập 1 | Giải bài tập Toán 7

      ΔABC vuông tại A và ΔDEF vuông tại D có:

      BC = EF

      ∠B = ∠E

      ⇒ΔABC = ΔDEF