\(\frac{AM}{MB}=\frac{1}{2}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2017

Chứng minh định lí Thales thì dùng diện tích nha bạn.

7 tháng 1 2017


A B C M N H K

Cụ thể như sau:

Vẽ \(MH,NK\) vuông góc \(BC\) thì thấy ngay \(S\left(BMC\right)=S\left(BNC\right)\) (\(S\) là diện tích hình)

Suy ra \(S\left(AMC\right)=S\left(ANB\right)\) hay \(\frac{S\left(AMC\right)}{S\left(ABC\right)}=\frac{S\left(ANB\right)}{S\left(ACB\right)}\), nghĩa là có câu a.

Mà có câu a thì có câu b

4 tháng 4 2020

a) Áp dụng tỉ lệ thức ta có:

\(\frac{AD}{MB}=\frac{1}{2}\) hay \(\frac{AM}{1}=\frac{MB}{2}=\frac{AM+MB}{2}=\frac{12}{3}=4\)

=> AM = 4 (cm)

=> MB = 4. 2 = 8

b) Ta có: \(\frac{AM}{AB}=\frac{4}{12}=\frac{1}{3}\)

Vì MN // BC nên theo định lí Talét ta có:

\(\frac{AM}{AB}=\frac{AC}{AN}\)\(\frac{AM}{AB}=\frac{1}{3}\)

nên \(\frac{AN}{AC}=\frac{1}{3}\)

Vậy \(\frac{AN}{AC}=\frac{1}{3}\)

28 tháng 2 2020

tui cx cần câu này nhưng ko có ai tl kìa

16 tháng 9 2018

làm bừa thui,ai tích mình mình tích lại

Số số hạng là : 

Có số cặp là :

50 : 2 = 25 ( cặp )

Mỗi cặp có giá trị là :

99 - 97 = 2 

Tổng dãy trên là :

25 x 2 = 50

Đáp số : 50

16 tháng 1 2017

hình vẽ

vì \(\frac{AM}{MB}\)\(\frac{AN}{NC}\) nên MN // BC ( định lý ta- let đảo) 

MN//BC 

áp dụng hệ quả của định lý ta-let ta có 

\(\frac{AM}{MB}\)\(\frac{MK}{MI}\)(1) 

\(\frac{AN }{NC}\)\(\frac{KN}{IC}\) (2) 

từ (1) và (2) 

=> \(\frac{MK}{MI}\)\(\frac{KN}{IC}\)

mà Mi = IC 

nên MK = KN => K là trung điểm của MN

12 tháng 2 2018

A B C D E M F N K

Gọi F, K lần lượt là giao của hai đường thẳng EM, DM với cạnh BC

Áp dụng định lí Ta – lét trong \(\Delta ABC\)có:

DK // AC \(\Rightarrow\frac{AD}{AB}=\frac{CK}{BC}\);  EF // AB \(\Rightarrow\frac{AE}{AC}=\frac{BF}{BC}\left(1\right)\)

Áp dụng định lí Ta – lét trong \(\Delta ABN\)có:

MF // AB \(\Rightarrow\frac{MN}{AN}=\frac{FN}{BN}\left(2\right)\)

Áp dụng định lí Ta – lét trong \(\Delta ACN\)có:

MK // AC \(\Rightarrow\frac{MN}{AN}=\frac{NK}{NC}\left(3\right)\)

Từ (2) và (3) \(\Rightarrow\frac{MN}{AN}=\frac{FN}{BN}=\frac{NK}{NC}=\frac{FN+NK}{BN+NC}=\frac{FK}{BC}\left(4\right)\)

Từ (1) và (4) \(\Rightarrow\frac{AD}{AB}+\frac{AE}{AC}+\frac{MN}{AN}\)

\(=\frac{CK}{BC}+\frac{BF}{BC}+\frac{FK}{BC}=\frac{CK+BF+FK}{BC}=\frac{BC}{BC}=1\)

Vậy tổng \(\frac{AD}{AB}+\frac{AE}{AC}+\frac{MN}{AN}\)có giá trị không đổi.