\(\frac{AM}{MB}=\frac{1}{2}\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2017

Chứng minh định lí Thales thì dùng diện tích nha bạn.

7 tháng 1 2017


A B C M N H K

Cụ thể như sau:

Vẽ \(MH,NK\) vuông góc \(BC\) thì thấy ngay \(S\left(BMC\right)=S\left(BNC\right)\) (\(S\) là diện tích hình)

Suy ra \(S\left(AMC\right)=S\left(ANB\right)\) hay \(\frac{S\left(AMC\right)}{S\left(ABC\right)}=\frac{S\left(ANB\right)}{S\left(ACB\right)}\), nghĩa là có câu a.

Mà có câu a thì có câu b

4 tháng 4 2020

a) Áp dụng tỉ lệ thức ta có:

\(\frac{AD}{MB}=\frac{1}{2}\) hay \(\frac{AM}{1}=\frac{MB}{2}=\frac{AM+MB}{2}=\frac{12}{3}=4\)

=> AM = 4 (cm)

=> MB = 4. 2 = 8

b) Ta có: \(\frac{AM}{AB}=\frac{4}{12}=\frac{1}{3}\)

Vì MN // BC nên theo định lí Talét ta có:

\(\frac{AM}{AB}=\frac{AC}{AN}\)\(\frac{AM}{AB}=\frac{1}{3}\)

nên \(\frac{AN}{AC}=\frac{1}{3}\)

Vậy \(\frac{AN}{AC}=\frac{1}{3}\)

28 tháng 2 2020

tui cx cần câu này nhưng ko có ai tl kìa

16 tháng 1 2017

hình vẽ

vì \(\frac{AM}{MB}\)\(\frac{AN}{NC}\) nên MN // BC ( định lý ta- let đảo) 

MN//BC 

áp dụng hệ quả của định lý ta-let ta có 

\(\frac{AM}{MB}\)\(\frac{MK}{MI}\)(1) 

\(\frac{AN }{NC}\)\(\frac{KN}{IC}\) (2) 

từ (1) và (2) 

=> \(\frac{MK}{MI}\)\(\frac{KN}{IC}\)

mà Mi = IC 

nên MK = KN => K là trung điểm của MN

16 tháng 9 2018

làm bừa thui,ai tích mình mình tích lại

Số số hạng là : 

Có số cặp là :

50 : 2 = 25 ( cặp )

Mỗi cặp có giá trị là :

99 - 97 = 2 

Tổng dãy trên là :

25 x 2 = 50

Đáp số : 50

16 tháng 1 2017

A B C I K

Có: \(\frac{AM}{MB}=\frac{AN}{NA}\)

=> MN//BC (theo đl ta-lét đảo)

Vì: MK//BI(cmt)

=> \(\frac{MK}{BI}=\frac{AK}{AI}\) (theo đl ta lét) (1)

Vì: KN//IC(cmt)

=> \(\frac{NK}{IC}=\frac{AK}{AI}\) (thep đl ta lét) (2)

Từ (1)(2) suy ra: \(\frac{MK}{BI}=\frac{NK}{IC}\)

Mà BI=IC(gt)

=> MK=NK

=> K là trung điểm của MN