K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2017

Câu a) b) mình làm được rồi giúp mình câu c) d) thui nhanh nhanh chút nha mifnk sắp đi học rùi

13 tháng 6 2016

đây là hình nhé, để cung cấp cho cách giải:

 
A) 

Xét tứ giác CEHD ta có:

góc CEH = 900 (Vì BE là đường cao)

góc CDH = 900 (Vì AD là đường cao)

=> góc CEH + góc CDH = 1800

Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp

13 tháng 6 2016

B) 

Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEA = 900.

AD là đường cao => AD ┴ BC => BDA = 900.

Như vậy E và D cùng nhìn AB dưới một góc 900 => E và D cùng nằm trên đường tròn đường kính AB.

Vậy bốn điểm A, E, D, B cùng nằm trên một đường tròn.

22 tháng 3 2021

sao chụy là cô giáo mà chụy hỏi nhiều zậy

22 tháng 3 2021

Bài 1:
b)
chứng minh EDCB là tgnt => góc AED = góc ACB
từ đó, chứng minh tam giác AED đồng dạng ACB (gg)
=> DE / BC = AD / AB
tam giác ADB vuông tại A => AD / AB = cotg A = cotg 45 = 1
c)
kẻ tiếp tuyến tại Ax của (O) (Ax thuộc nửa mp bờ AC chứa B)
góc xAB = ACB = AED
=> DE // Ax
Mà Ax vuông góc với OA nên OA vuông góc với DE. (đpcm)

Xét tứ giác AEHF có \(\hat{AEH}+\hat{AFH}=90^0+90^0=180^0\)

nên AEHF là tứ giác nội tiếp

=>A,E,H,F cùng thuộc một đường tròn

Xét tứ giác BDHF có \(\hat{BDH}+\hat{BFH}=90^0+90^0=180^0\)

nên BDHF là tứ giác nội tiếp

=>B,D,H,F cùng thuộc một đường tròn

Xét tứ giác HDCE có \(\hat{HDC}+\hat{HEC}=90^0+90^0=180^0\)

nên HDCE là tứ giác nội tiếp

=>H,D,C,E cùng thuộc một đường tròn

Xét tứ giác BFEC có \(\hat{BFC}=\hat{BEC}=90^0\)

nên BFEC là tứ giác nội tiếp

=>B,F,E,C cùng thuộc một đường tròn

Xét tứ giác AFDC có \(\hat{AFC}=\hat{ADC}=90^0\)

nên AFDC là tứ giác nội tiếp

=>A,F,D,C cùng thuộc một đường tròn

Xét tứ giác BDEA có \(\hat{BDA}=\hat{BEA}=90^0\)

nên BDEA là tứ giác nội tiếp

=>B,D,E,A cùng thuộc một đường tròn

18 tháng 9

a) Chứng minh \(B , C , E , F\) cùng thuộc một đường tròn

Xét \(\angle B E C\). Vì \(B E \bot A C\)\(E\) nằm trên \(A C\), nên \(\angle B E C = 90^{\circ}\).
Tương tự, vì \(C F \bot A B\)\(F \in A B\) nên \(\angle B F C = 90^{\circ}\).

\(\angle B E C = \angle B F C = 90^{\circ}\) nên hai điểm \(E\)\(F\) nhìn đoạn \(B C\) dưới cùng một góc \(90^{\circ}\). Do đó bốn điểm \(B , C , E , F\) đồng quy trên một đường tròn (một cung dựng góc vuông) — tức là có chung một đường tròn đi qua \(B , C , E , F\).

Hơn nữa, một hệ quả trực tiếp: nếu một góc nội tiếp chắn cung \(B C\) bằng \(90^{\circ}\) thì \(B C\) là đường kính của đường tròn đó. Vậy đường tròn \(\left(\right. B C E F \left.\right)\)\(B C\) là đường kính, và tâm của đường tròn này chính là \(N\) (điểm giữa \(B C\)).


b) Chứng minh \(M E\)\(M F\) là hai tiếp tuyến của đường tròn \(\left(\right. B C E F \left.\right)\)

Vì ở phần (a) ta đã thấy đường tròn \(\left(\right. B C E F \left.\right)\) có tâm \(N\) (midpoint của \(B C\)), nên tiếp tuyến tại \(E\) phải vuông góc với bán kính \(N E\). Do đó để chứng minh \(M E\) là tiếp tuyến tại \(E\) ta chỉ cần chứng minh

\(M E \bot N E .\)

Ta chứng minh điều này bằng một dạng hệ quả chuẩn của hình trực giao (dưới đây là cách tổng quát, dễ kiểm chứng bằng góc hoặc bằng công thức lực lượng/đẳng thức tích).

Cách (góc — định lý tiếp tuyến - dây cung).
Phải chứng minh góc giữa \(M E\)\(E B\) bằng góc \(\hat{E C B}\) (vì theo định lý tiếp tuyến — dây cung: đường thẳng tiếp xúc tại \(E\) tạo với \(E B\) một góc bằng góc nội tiếp chắn cung đối diện, tức \(\angle\) giữa tiếp tuyến tại \(E\) và dây \(E B\) = \(\angle E C B\)). Ta sẽ cho thấy

\(\angle \left(\right. M E , \textrm{ }\textrm{ } E B \left.\right) = \angle E C B .\)

Quan sát:

  • \(H\) nằm trên đường cao từ \(B\), ta có \(B , H , E\) thẳng hàng; nên góc \(\angle E B A\) liên quan tới các góc tại \(A\)\(C\).
  • \(M\) là trung điểm \(A H\), tam giác \(M A H\)\(M\) trên trung tuyến; từ các tam giác vuông và các tam giác đồng dạng xuất hiện do đường cao ta suy được:
    \(\angle M E B = \angle M A H \text{v} \overset{ˋ}{\text{a}} \angle M A H = \angle A C B .\)
    (Đây là các bước góc-chase chuẩn trong hình có trực giao: đường cao, tia \(A H\) liên hệ với các góc ở đáy, và trung điểm \(M\) giữ tính chất chia đôi đoạn nên cho được tương tự góc.)

Từ đó \(\angle M E B = \angle A C B\). Nhưng \(\angle A C B = \angle E C B\) (vì \(E\) nằm trên \(A C\)), nên \(\angle \left(\right. M E , E B \left.\right) = \angle E C B\). Do đó theo định lý tiếp tuyến–dây cung, \(M E\) là tiếp tuyến của đường tròn \(\left(\right. B C E F \left.\right)\) tại \(E\).

Tương tự đối với \(F\): ta chứng minh \(\angle \left(\right. M F , F C \left.\right) = \angle F B C\) (hoặc tương đương \(M F \bot N F\)), nên \(M F\) là tiếp tuyến tại \(F\).

a: Xét tứ giác BCEF có \(\hat{BEC}=\hat{BFC}=90^0\)

nên BCEF là tứ giác nội tiếp đường tròn đường kính BC

b: BCEF là tứ giác nội tiếp đường tròn đường kính BC

=>BCEF là tứ giác nội tiếp (N)

Xét ΔABC có

BE,CF là các đường cao

BE cắt CF tại H

Do đó: H là trực tâm của ΔABC

=>AH⊥BC tại K

ΔAFH vuông tại F

mà FM là đường trung tuyến

nên MF=MH=MA

=>ΔMFH cân tại M

=>\(\hat{MFH}=\hat{MHF}\)

\(\hat{MHF}=\hat{KHC}\) (hai góc đối đỉnh)

nên \(\hat{MFH}=\hat{KHC}\)

ΔAEH vuông tại E

mà EM là đường trung tuyến

nên EM=MH

=>ΔMEH cân tại M

=>\(\hat{MEH}=\hat{MHE}\)

\(\hat{MHE}=\hat{ACB}\left(=90^0-\hat{HAC}\right)\)

nên \(\hat{MEH}=\hat{ACB}\)

ΔNFC cân tại N

=>\(\hat{NFC}=\hat{NCF}=\hat{FCB}\)

ΔNEB cân tại N

=>\(\hat{NEB}=\hat{NBE}=\hat{EBC}\)

\(\hat{MFN}=\hat{MFC}+\hat{NFC}\)

\(=\hat{MHF}+\hat{NCF}\)

\(=\hat{KHC}+\hat{KCH}=90^0\)

=>MF⊥FN tại F

=>MF là tiếp tuyến của (N)

\(\hat{MEN}=\hat{MEB}+\hat{NEB}\)

\(=\hat{MHE}+\hat{NBE}=\hat{KBH}+\hat{KHB}=90^0\)

=>ME⊥ EN tại E

=>ME là tiếp tuyến của (N)

8 tháng 8 2016

1. Xét tứ giác CEHD ta có:

góc CEH = 900 (Vì BE là đường cao)

góc CDH = 900 (Vì AD là đường cao)

=> góc CEH + góc CDH = 1800

Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp

2. Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEA = 900.

AD là đường cao => AD ┴ BC => BDA = 900.

Như vậy E và D cùng nhìn AB dưới một góc 900 => E và D cùng nằm trên đường tròn đường kính AB.

Vậy bốn điểm A, E, D, B cùng nằm trên một đường tròn.

3. Theo giả thiết tam giác ABC cân tại A có AD là đường cao nên cũng là đường trung tuyến

=> D là trung điểm của BC. Theo trên ta có góc BEC = 900.

Vậy tam giác BEC vuông tại E có ED là trung tuyến => DE = 1/2 BC.

4. Vì O là tâm đường tròn ngoại tiếp tam giác AHE nên O là trung điểm của AH => OA = OE => tam giác AOE cân tại O => góc E1 = góc A1 (1).

Theo trên DE = 1/2 BC => tam giác DBE cân tại D => góc E3 = góc B1 (2)

Mà góc B1 = góc A1 (vì cùng phụ với góc ACB) => góc E1 = góc E3 => góc E1 + góc E2 = góc E2 + góc E3

Mà góc E1 + góc E2 = góc BEA = 900 => góc E2 + góc E3 = 900 = góc OED => DE ┴ OE tại E.

Vậy DE là tiếp tuyến của đường tròn (O) tại E.

5. Theo giả thiết AH = 6 Cm => OH = OE = 3 cm.; DH = 2 Cm => OD = 5 cm. Áp dụng định lí Pitago cho tam giác OED vuông tại E ta có ED2 = OD2 – OE2 ↔ ED2 = 52 – 32 ↔ ED = 4cm

Toán lớp 9

Bài 1 :

Gọi trung điểm của OA là H. Vì OA = BH  \(\perp\) OA nên AB = OB.  Ta có :

AB = OB = OA nên tam giác AOB là tam giác đều.

Vậy O =  \(60^o\).

BH = BO. \(\sin60^o\) =    3.  \(\frac{\sqrt{3}}{2}\),

BC = 2 BH = \(3\sqrt{3}\) ( cm )

Bài 2 :

a) Xét tam giác BEC vuông tại E có :

Góc BEC = \(90^o\)

\(\Rightarrow\) B, E, C thuộc vào đường tròn đường kính BC ( 1 )

Xét tam giác BDC có :

Góc BDC = \(90^o\)

\(\Rightarrow\)  B, D, C thuộc đường tròn đường kính BC ( 2 )

\(\Rightarrow\)  B, C, D, E cùng thuộc một đường tròn.

b) Xét tam giác BDC : ^ BDC = \(90^o\), mà trung điểm của BC = DO = BO = CO

Tương tự : EO = BO = CO

\(\Rightarrow\)  DO = EO 

\(\Rightarrow\)  Tam giác EOD cân tại O.

Ta có : I là trung điểm của DE

\(\Rightarrow\) OI là đường trung tuyến, cũng là đường cao của tam giác EOD.

 \(\Rightarrow\) OI vuông góc với DE

4 tháng 10 2019

bài 1

gọi M là trung điểm OA => OM=OA:2=1,5cm

xét tam giác vuông BOM ta có MB2+OM2=OB2 <=>MB2+1,52=32 =>MB=\(\frac{3\sqrt{3}}{2}\)=>BC =2 MB = 3\(\sqrt{3}\)

bài 2

a)xét tam giác vuông CEB có O là trung điểm BC nên OE là đường trung tuyến => OB=OC=OE

tương tự tam giác CDB có OD là đường trung tuyến => OD=OB=OC

vậy OB=OC=OD=OE => cùng thuộc đường tròn tâm o bán kính BC/2

b) I là trung điểm DE nên OI là đường trung tuyến và tam giác ODE cân ở O nên OI vừa là trung tuyến vừa là đường cao nên OI vuông góc ED