Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét t/g ABI và t/g CKI có:
AI = CI (gt)
AIB = CIK ( đối đỉnh)
BI = KI (gt)
Do đó, t/g ABI = t/g CKI (c.g.c) (đpcm)
b) t/g ABI = t/g CKI (câu a) => ABI = CKI (2 góc tương ứng)
Mà ABI và CKI là 2 góc ở vị trí so le trong nên AB // KC (đpcm)
c) đề sai nhé sửa IB = IF thành ID = IF
Xét t/g DBI và t/g FKI có:
ID = IF (gt)
DIB = FIK ( đối đỉnh)
IB = IK (gt)
Do đó, t/g DBI = t/g FKI (c.g.c)
=> DBI = FKI (2 góc tương ứng)
Mà DBI và FKI là 2 góc ở vị trí so le trong nên BD // KF (đpcm)
Hình bạn tự vẽ nha !
Chứng minh
a, Áp dụng định lí Pi-ta-go vào \(\Delta ABC\) vuông tại A , ta có :
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC^2=8^2+6^2=64+36=100\)
\(\Rightarrow BC=10\)
b, Xét \(\Delta BEA\) và \(\Delta DEA\) có :
AB = AD (gt)
\(\widehat{BAE}=\widehat{DAE}\) (=1v)
AE chung
\(\Rightarrow\Delta BEA=\Delta DEA\left(c.g.c\right)\)
c, Xét \(\Delta BCD\) có CA là đường trung tuyến ứng với cạnh BD và \(EA=\dfrac{1}{3}AC\) nên E là trọng tâm của \(\Delta BCD\)
Vậy DE đi qua trung điểm của cạnh BC
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó:ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AB//CD
c: Xét tứ giác AEDF có
AE//DF
AE=DF
Do đó: AEDF là hình bình hành
Suy ra: Hai đường chéo AD và FE cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của AD
nên M là trung điểm của FE
hay F,M,E thẳng hàng
A M B I N C O
a) Xét tam giác MOB và tam giác ION có:
MO = ON (gt)
BO = OI (gt)
góc MOB = góc ION (đối đỉnh)
=> tam giác MOB = tam giác ION (c.g.c)
=> góc MBO = góc OIN (cặp góc tương ứng)
Mà góc MBO = góc OIN (ở vị trí so le trong) => BM // NI
b) Vì tam giác MOB = tam giác ION (câu a)
=> MB = IN (cặp cạnh tương ứng)
Mà MB = NC (gt)
=> IN = NC => Tam giác NIC cân
c) xin lỗi bn nhé ! câu c mình nghĩ ko ra, bn nhờ bn khác giúp nha !
a: AB=6cm
Xét ΔABC có
BA là đường trung tuyến
BM=2/3BA
Do đó:M là trọng tâm của ΔBCD
b: Ta có: M là trọng tâm của ΔBCD
nên DM cắt BC tại trung điểm của BC
hay D,M,E thẳng hàng
A B C O I M N 1 2
a) Xét \(\Delta MOB\) và \(\Delta NOI\) có:
OM = ON (gt)
\(\widehat{O_1=\widehat{O_2}}\) (đối đỉnh)
OB = OI (gt)
Vậy: \(\Delta MOB=\Delta NOI\left(c-g-c\right)\)
b) Vì \(\Delta MOB=\Delta NOI\left(cmt\right)\)
Suy ra: BM = NI (hai cạnh tương ứng) (1)
Mà BM = NC (gt) (2)
Từ (1) và (2) suy ra:
\(\Delta NIC\) cân tại N (đpcm).