Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)
a: Xét ΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔABD=ΔACD
Suy ra: BD=CD
b: Ta có: ΔABC cân tại A
mà AD là tia phân giác
nên AD là đường cao
a)xet tam giac vuong AHB va tam giac vuong DKC ta co
AB=CD(gt), goc ABH=goc KCD ( 2 goc sole trong va AB//CD)
--> tam giac AHB= tam giac DKC ( ch-gn)
--> AH=DK ( 2 canh tuong ung)
b) ta co
OB=OC ( O la trung diem BC)
BH=CK( tam giac AHB=tam giac DKC)
--> OB=BH=OC-CK
--> OH=HK
xet tam giac AHO va tam giac DKO ta co
OH=HK (Cmt); AH=DK( tam giac ABH= tam giac CDK); goc AHO=goc DKO(=90)
--> tam giac AHO=tam giac DKO (c-g-c)
--> goc AOH=goc KOD
ta co
goc AOH+goc AOC=180 ( 2 goc ke bu)
goc AOH=goc KOD (cmt)
--> goc KOD+ goc AOC=180
--> goc AOD=180--> A,O,D thang hang
c) xet tam giac AOC va tam giac DOB ta co
OA=OD ( tam giac OAH=tam giac OKD); OC=OB( O la trung diem BC);goc AOC=goc BOD ( 2 goc doi dinh)
--> tam giac AOC = tam giac DOB (c-g-c)
--> goc OAC=goc ODB ( 2 goc tuong ung)
ma goc OAC va goc ODB nam o vi tri so le trong
nen AC//BD
A B C H O D K
P/S 3 chữ hoa liên tiếp là góc :D
a,Ta có :\(AD//BC=>DAC=BCA\)
Xét Tam giác ABC và tam giác CDA
\(BC=DA\)(gt)
\(BCA=DAC\)(cmt)
\(CA\)cạnh chung
\(=>\Delta ABC=\Delta CDA\left(c-g-c\right)\)
b,Ta có : \(AD//BC=>ADB=CBD\)
Xét tam giác ABD và tam giác CDB
\(BC=AD\)(gt)
\(ADB=CBD\)(cmt)
\(BD\)cạnh chung
\(=>\Delta ABD=\Delta CDB\left(c-g-c\right)\)
c,Xét tam giác ODA và tam giác OBC
\(DBC=BDA\)(cm câu b)
\(AD=BC\)(gt)
\(DAC=ACB\)(cm câu a)
\(=>\Delta ODA=\Delta OBC\left(g-c-g\right)\)