Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Đức Hiếu - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo bài tương tự tại đây nhé.
Câu hỏi của Nguyễn Đức Hiếu - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo bài tương tự tại đây nhé.
x H y E D A B M C K
a, Để chứng tỏ DE = 2AM,ta tạo ra đoạn thẳng gấp đôi AM bằng cách lấy K trên tia đối của tia MA sao cho MK = MA,ta sẽ chứng minh AK = DE
Dễ thấy AC = BK, AC // BK . Xét \(\Delta ABK\)và \(\Delta DAE\), ta có :
AB = AD gt
BK = AE cùng bằng AC
\(\widehat{ABK}=\widehat{DAE}\)cùng bù với góc BAC
Do đó \(\Delta ABK=\Delta DAE(c.g.c)\)
\(\Rightarrow AK=DE\)hai cạnh tương ứng
Vậy AM = DE/2
b, Gọi H là giao điểm của MA và DE.Ta có \(\widehat{BAK}+\widehat{DAH}=90^0\)nên \(\widehat{D}+\widehat{DAH}=90^0\), do đó góc AHD = 900
Dùng hình của bạn Mai nhé.
Kẽ DP và EQ \(⊥\)HK tại P và Q.
Xét \(\Delta DPA\)và \(\Delta AHB\)có
\(\hept{\begin{cases}\widehat{DPA}=\widehat{AHB}=90\\DA=AB\\\widehat{PDA}=\widehat{HAB}\left(phu\widehat{PAD}\right)\end{cases}}\)
\(\Rightarrow\Delta DPA=\Delta AHB\)
\(\Rightarrow DP=AH\left(1\right)\)
Xét \(\Delta EQA\)và \(\Delta AHC\)có
\(\hept{\begin{cases}\widehat{EQA}=\widehat{CHA}=90\\EA=CA\\\widehat{QEA}=\widehat{HCA}\left(phu\widehat{QAE}\right)\end{cases}}\)
\(\Rightarrow\Delta EQA=\Delta AHC\)
\(\Rightarrow EQ=AH\left(2\right)\)
Từ (1) và (2) \(\Rightarrow DP=EQ\)
Xét \(\Delta DPK\)và \(\Delta EQK\)có
\(\hept{\begin{cases}\widehat{DPK}=\widehat{EQK}=90\\DP=EQ\\\widehat{DKP}=\widehat{EKQ}\end{cases}}\)
\(\Rightarrow\Delta DPK=\Delta EQK\)
\(\Rightarrow DK=EK\)
Vậy K là trung điểm của DE
Hình đây anh @alibaba
A B C H E D K