K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔBMD và ΔCME có 

BM=CM(M là trung điểm của BC)

\(\widehat{BMD}=\widehat{CME}\)(hai góc đối đỉnh)

MD=ME(gt)

Do đó: ΔBMD=ΔCME(c-g-c)

b) Ta có: ΔBMD=ΔCME(cmt)

nên BD=CE(hai cạnh tương ứng)

c) Ta có: ΔBMD=ΔCME(cmt)

nên \(\widehat{BDM}=\widehat{CEM}\)(hai góc tương ứng)

mà \(\widehat{BDM}\) và \(\widehat{CEM}\) là hai góc ở vị trí so le trong

nên BD//EC(Dấu hiệu nhận biết hai đường thẳng song song)

Ta có: BD//EC(cmt)

BD\(\perp\)AB(gt)

Do đó: EC\(\perp\)AB(Định lí 2 từ vuông góc tới song song)

20 tháng 2 2021

cảm ơn nhé bạn

 

10 tháng 8 2016

Bạn tự vẼ hình nha

Gọi N là giao điểm của CE và AB

Xét CME và BMD có

MB=MC(giả thiết )

MD=ME(giả thiết)

BMD=CME(2 góc đối đỉnh)

Do đó CME=BMD(c.g.c)

=>MBD=MCE => BD // CE

=> DBN+CNB=180 (2 gõc trong cùng phía bù nhau)

=>CNB=180-CNB=180-90=90

Vậy CE vuông góc với AB

19 tháng 11 2017

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

+) Xét ΔBMD và ΔCME có:

BM = MC (vì M là trung điểm BC)

MD = ME (giả thiết)

∠BMD = ∠EMC (hai góc đối đỉnh)

⇒ ΔBMD = ΔCME (c.g.c)

⇒ ∠D = ∠MEC (hai góc t.ư)

Mà hai góc này ở vị trí so le trong nên suy ra BD // CE.

Ta có AB ⊥ BD (giả thiết) và BD // CE (chứng minh trên) nên AB ⊥ CE

11 tháng 6 2017

Xét \(\Delta BMD \)\(\Delta CME \) có:

ME = MD (gt)

BM = CM ( vì M là trung điểm của BC)

\(\widehat{DMB}=\widehat{EMC}\) (đối đỉnh)

Do đó: \(\Delta BMD \) = \(\Delta CME \) (c.g.c)

=> \(\widehat{BDM}=\widehat{MEC}\) (2 góc tương ứng)

mà 2 góc \(\widehat{BMD}\)\(\widehat{MEC}\)nằm ở vị trí so le trong

=> BD // CE.

Ta có:\(AB\perp BD\) , BD // CE

=> AB \(\bot\) CE.

27 tháng 9 2015

Giúp mình bài này với bạn!!!

http://olm.vn/hoi-dap/question/213159.html

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OAa) Chứng minh: Tam giác OAH = tam giác OBHb) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBNc) Chứng minh AB vuông góc với OHd) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C...
Đọc tiếp

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OA

a) Chứng minh: Tam giác OAH = tam giác OBH

b) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBN

c) Chứng minh AB vuông góc với OH

d) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot

2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C sao cho AB - AC. Kẻ BH vuông góc AC (H thuộc AC) và CK vuông góc AB (K thuộc AB)

a) Chứng minh góc ABH = góc ACK

b) BH cắt CK tại E. Chứng minh AE vuông góc BC

c) Tam giác ABC phải thoả mãn điều kiện gì để E là điểm cách đều 3 cạnh ?

3. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA

a) Chứng minh: Tam giác AMB = tam giác DMC

b) Chứng minh: AC = BD và AC //BD

c) Chứng minh: Tam giác ABC = tam giác DCB. Tính số đo góc BDC

4. Cho tam giác ABC vuông tại A có góc ABC = 60 độ

a) Tính số đo góc ACB

b) Trên tia đối của tia AC lấy điểm D sao cho AD = AC. Chứng minh tam giác ABD = tam giác ABC

c) Vẽ tia Bx là tia phân giác của góc ABC. Qua C vẽ đường thẳng vuông góc với AC, cắt tia Bx tại E. Chứng minh AC = 1/2 BE

2
1 tháng 8 2016

Võ Hùng Nam hảo hảo a~

Bài 3: 

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD
Do đó: ABDC là hình bình hành

Suy ra:AC//BD và AC=BD

c: Xét ΔABC và ΔDCB có 

AB=DC

\(\widehat{ABC}=\widehat{DCB}\)

BC chung

Do đó: ΔABC=ΔDCB

Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)

Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độa) Tính góc C.b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.a) Chứng minh tam giác AMB = tam giác AMC.b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.c) Qua C, vẽ...
Đọc tiếp

Bài 1. Cho tam giác ABC vuông tại A có góc B= 53 độ

a) Tính góc C.

b) Trên cạnh BC, lấy một điểm D sao cho BD=BA. Tia phân giác của góc B cắt cạnh AC ở điểm E. Chứng minh tam giác BEA = tam giác BED.

Bài 2. Cho tam giác ABC có AB= AC và M là trung điểm của cạnh BC.

a) Chứng minh tam giác AMB = tam giác AMC.

b) Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC.

c) Qua C, vẽ đường thẳng b song song với AM. Gọi N là giao điểm của hai đường thẳng a và b. Chứng minh tam giác AMC = tam giác CNA.

Bài 3. Cho tam giác ABC, gọi M là trung điểm của cạnh BC. Trên tia đối của tia MAlấy điểm D sao cho MD = MA.

a) Chứng minh tam giác MAB = tam giác MDC.

b) Chứng minh rằng AB = CD và AB // CD.

Bài 4. Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = BA. Vẽ AH vuông góc với BC tại H.

a) Chứng minh rằng: tam giác ABD = tam giác EBD và AD = ED.

b) Chứng minh rằng: AH // DE.

*Vẽ hình giúp mình*

1
17 tháng 4 2020

bài 1

có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0=>\widehat{C}=180^0-\widehat{A}-\widehat{B}=180^0-90^0-53^0=37^0\)

b) xét 2 tam giác của đề bài có

góc ABE = góc DBE

BD=BA

BE chung

=> 2 tam giác = nhau

22 tháng 11 2019

Bài 1:

A A A B B B C C C K K K M M M D D D N N N

a/Xét \(\Delta KMD\)và \(\Delta CMA\)có:MD=MA(gt);KM=MC(do M là trung điểm KC);^KMD=^CMA(đối đỉnh)

Do đó:\(\Delta KMD=\Delta CMA\left(c.g.c\right)\)

b/\(\Delta KMD=\Delta CMA\left(c.g.c\right)\Rightarrow\widehat{MKD}=\widehat{MCA}\Rightarrow KD//CA\Rightarrow\widehat{CKD}=\widehat{ACB}=30^0\Rightarrow\widehat{AKD}=90^0+30^0=120^0\)c/Ta có KN//AC(do cùng vuông góc với AB),mà KD//CA nên K;N;D thẳng hàng