K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2016

Giả thiết của dề bài chưa đúng, mình sửa lại thành \(cosA+cosB+cosC=\sqrt{cosA.cosB}+\sqrt{cosB.cosC}+\sqrt{cosC.cosA}\)

Đặt \(a=\sqrt{cosA},b=\sqrt{cosB},c=\sqrt{cosC}\)

Suy từ giả thiết : 

\(2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a=b=c\\a,b,c>0\end{cases}}\)

Vậy ta có \(\sqrt{cosA}=\sqrt{cosB}=\sqrt{cosC}\Rightarrow\hept{\begin{cases}cosA=cosB=cosC\\\widehat{A}+\widehat{B}+\widehat{C}=180^o\end{cases}}\)

\(\Rightarrow\widehat{A}=\widehat{B}=\widehat{C}=60^o\)

\(\Rightarrow\Delta ABC\) là tam giác đều.

18 tháng 8 2017

Áp dụng bất đẳng thức cô si ta có :

b+c\(\ge2\)\(\sqrt{bc}\)\(\Rightarrow\)R(b+c)\(\ge2\)R.\(\sqrt{bc}\)\(\ge a\sqrt{bc}\)(quan hệ đường kính và dây cung 2R\(\ge\)BC=a)

Dấu "=" xảy ra khi:\(\left\{{}\begin{matrix}b=c\\BC=2R\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}CA=AB\\BC=2R\end{matrix}\right.\)

\(\Leftrightarrow\Delta ABC\) vuông cân tại A

10 tháng 12 2016

Đặt \(sinB=x\) , \(sinC=y\) 

Áp dụng BĐT Cauchy : \(\left(x+y\right)^2\ge4xy\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

Đẳng thức xảy ra khi x = y , hay \(sinB=sinC\Rightarrow\widehat{B}=\widehat{C}\) , suy ra tam giác ABC cân.