K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc NDH+góc NFH=180 độ

=>NDHF nội tiếp

b: Xét ΔHFN vuông tại F và ΔHEC vuông tại E có

góc FHN=góc EHC

=>ΔHFN đồng dạng với ΔHEC

=>HF/HE=HN/HC

=>HF*HC=HE*HN

c: Kẻ tiếp tuyến Mx tại M của (O)

=>góc xMC=góc MNC=góc MEF

=>FE//Mx

=>EF vuông góc MK

 

12 tháng 3 2023

phần c tại sao góc MEF=góc MNC vậy ạ

 

a: góc ADH+góc AEH=180 độ

=>ADHE nội tiếp

c: Kẻ tiếp tuyến Ax của (O)

=>góc xAC=góc ABC=góc ADE

=>DE//Ax

=>OA vuông góc DE

12 tháng 4 2017

O A B C E F H x

Kẻ thêm tiếp tuyến Bx với đường tròn (O)

Ta có: góc BAC = góc BEF (tứ giác AFEC nội tiếp, góc ngoài bằng góc đối trong)

Mà: góc BAC = góc xBC (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung BC)

=> góc xBC = góc BEF

Mà 2 góc này ở vị trí so le trong

=> Bx // EF
Mà: OB vuông góc Bx

=> OB vuông góc với EF (đpcm)

NV
20 tháng 3 2022

c.

Qua A kẻ tiếp tuyến \(Ax\Rightarrow Ax\perp OA\) (1)

Do E và F cùng nhìn BC dưới 1 góc vuông

\(\Rightarrow\) Tứ giác BCEF nội tiếp

\(\Rightarrow\widehat{CEF}+\widehat{CBF}=180^0\)

Mà \(\widehat{CEF}+\widehat{AEF}=180^0\)

\(\Rightarrow\widehat{CBF}=\widehat{AEF}\)

Lại có \(\widehat{CBF}=\widehat{CAx}\) (cùng chắn AC)

\(\Rightarrow\widehat{AEF}=\widehat{CAx}\)

\(\Rightarrow Ax||EF\) (hai góc so le trọng bằng nhau) (2)

\(\left(1\right);\left(2\right)\Rightarrow OA\perp EF\)

NV
20 tháng 3 2022

undefined

a: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

b; góc ABD=1/2*180=90 độ

=>BD vuông góc AB

=>BD//CH

góc ACD=1/2*180=90 độ

=>CD vuông góc AC

=>CD//BH

Xét tứ giác BHCD có

BH//CD

BD//CH

=>BHCD là hbh

=>BC cắt HDtại trung điểm của mỗi đường

=>H,M,D thẳng hàng