Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)
a) Do AB // DE nên \(\widebat{AE}=\widebat{BD}\Rightarrow\widebat{AE}+\widebat{DC}=\widebat{BD}+\widebat{DC}=\widebat{BC}\)
Ta có \(\widehat{MIC}\) là góc có đỉnh nằm trong đường tròn nên \(\widehat{MIC}=\frac{\widebat{AE}+\widebat{DC}}{2}=\frac{\widebat{BC}}{2}\)
Góc \(\widehat{MBC}\) là góc tạo bởi tiếp tuyến và dây cung nên \(\widehat{MBC}=\frac{\widebat{BC}}{2}\)
Suy ra \(\widehat{MIC}=\widehat{MBC}\)
Xét tứ giác BMCI có \(\widehat{MIC}=\widehat{MBC}\) nên BMCI là tứ giác nội tiếp.
b) Ta có \(\widehat{MIC}=\widehat{MBC}\Rightarrow\Delta FIC\sim\Delta FBM\left(g-g\right)\)
\(\Rightarrow\frac{FI}{FB}=\frac{FC}{FM}\Rightarrow FI.FM=FB.FC\)
Ta cũng có \(\widehat{DBF}=\widehat{CEF}\Rightarrow\Delta BFD\sim\Delta EFC\left(g-g\right)\)
\(\Rightarrow\frac{FB}{FE}=\frac{FD}{FC}\Rightarrow FE.FD=FB.FC\)
Vậy nên \(FI.FM=FE.FD\)
c) Do PQ là đường kính nên \(\widehat{PTQ}=90^o\)
Suy ra \(\Delta FIQ\sim\Delta FTM\left(c-g-c\right)\Rightarrow\widehat{FTM}=\widehat{FIQ}\)
Lại có BIMC nội tiếp, BOCM cũng nội tiếp nên 5 điểm B, O, I, C, M cùng thuộc đường trong đường kính OM.
Suy ra \(\widehat{FIQ}=90^o\)
Vậy thì P, T, M thẳng hàng.
d) Ta thấy \(S_{IBC}=\frac{1}{2}BC.d\left(I,BC\right)\)
Do BC không đổi nên SIBC lớn nhất khi d(I; BC) lớn nhất.
Điều này xảy ra khi I trùng O hay tam giác ABC vuông tại B.
Vậy diện tích tam giác IBC lớn nhất khi AC là đường kính đường tròn (O).
b, Vì DF//AB nên \(\widehat{DHC}=\widehat{BAC}\)(đồng vị)
mà \(\widehat{BAC}=\frac{1}{2}\widehat{BOC}=\widehat{DOC}\)(góc nội tiếp và góc ở tâm)
\(\Rightarrow\widehat{DOC}=\widehat{DHC}\)hay tứ giác DOHC nội tiếp
\(\Rightarrow\widehat{DHO}=\widehat{DCO}=90^0\)\(\Rightarrow OH\perp DF\)
câu c tí nữa làm :P
c, Từ a, b => 5 điểm B,O,H,C,D cùng nằm trên đường tròn đường kính OD
Vì tứ giác BHCD nội tiếp \(\Rightarrow ID.IH=IB.IC\)
Vì tứ giác BECF nội tiếp \(\Rightarrow IE.IF=IB.IC\)
\(\Rightarrow ID.IH=IE.IF\)
a, Xét tứ giác ABDK có
^AKB = ^ADB = 900
mà 2 góc này kề, cùng nhìn cạnh AB
Vậy tứ giác ABDK là tứ giác nt 1 đường tròn
b, Ta có ^KBD = ^DAK ( góc nt chắn cung KE của tứ giác ABEH )
mà ^EAC = ^CBE ( góc nt chắn cung EC )
=> ^KBC = ^CBE
=> BC là tia pg ^HBE
a) Xét tam giác BEC
Ta có :
tam giác BEC nt (O)
BC đường kính
=> tam giác BEC vuông tại E
Xét tam giác BDC
Ta có :
tam giác BDC nt (o)
BC đường kính
=> tam giác BDC vuông tại D
Ta có:
góc BEC vuông tại E
góc BDC vuông tại D
Mà EC cắt DB tại H
=> H là trực tâm
=> AH vuông góc Với BC tại F
c) Xét tg BEHF
Ta có
góc BEH= 90 độ
góc BFH = 90 độ
=> góc BEC + góc BDC = 90 độ + 90 độ = 180 độ
=> tg BEHF nt(tổng 2 góc đối bằng 180 độ )
Ta có: B, E, D, F thuộc (O)
=> tg BEDF nt (O)
=> góc EBD = góc EFD ( 1 )
ta có: tg BEHF nt
=> góc EBH = góc EFH ( 2 )
từ (1) và (2)
=> góc EFD = góc EFH
=> AF // AF
(a) \(P,Q\) đối xứng với nhau qua \(BC\) nên \(BC\) là đường trung trực của \(PQ\).
Suy ra: \(CQ=CP\Rightarrow\Delta CPQ\) cân tại \(C\Rightarrow\hat{KCP}=\hat{KCQ}\), hay \(\hat{BCP}=\hat{BCF}\). Mà \(\hat{BAP}=\hat{BCP}\) (góc nội tiếp cùng chắn cung \(\stackrel\frown{BP}\)).
Do đó: \(\hat{BAP}=\hat{BCF}\)
Xét \(\Delta ABK,\Delta CBF:\)
\(\hat{B}\) chung và \(\hat{BAP}=\hat{BCF}\left(cmt\right)\)
\(\Rightarrow\Delta ABK\sim\Delta CBF\left(g.g\right)\Rightarrow\dfrac{AK}{CF}=\dfrac{AB}{CB}\Leftrightarrow\dfrac{AK}{AB}=\dfrac{CF}{CB}\left(1\right)\)
Ta cũng dễ chứng minh được \(\Delta ABK\sim\Delta CPK\left(g.g\right)\Rightarrow\dfrac{AK}{CK}=\dfrac{AB}{CP}=\dfrac{AB}{CQ}\left(CP=CQ\left(cmt\right)\right)\)
\(\Rightarrow\dfrac{AK}{AB}=\dfrac{CK}{CQ}\left(2\right)\).
Từ (1) và (2), suy ra: \(\dfrac{CF}{CB}=\dfrac{CK}{CQ}\Leftrightarrow\dfrac{CQ}{CB}=\dfrac{CK}{CF}\).
Xét \(\Delta CQK,\Delta CBF:\left\{{}\begin{matrix}\hat{C}\text{ chung}\\\dfrac{CQ}{CB}=\dfrac{CK}{CB}\left(cmt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta CQK\sim\Delta CBF\left(c.g.c\right)\Rightarrow\hat{CKQ}=\hat{CFB}\).
Lại có: \(\hat{CKQ}+\hat{QKB}=180^o\) (kề bù), suy ra \(\hat{CFB}+\hat{QKB}=180^o\).
Đây là hai góc đối nhau nên tứ giác \(BKQF\) nội tiếp được một đường tròn (đpcm).
Chứng minh tương tự như trên thì ta cũng suy ra được tứ giác \(KQEC\) nội tiếp được một đường tròn.
(b) Từ câu a, \(KQEC\) là tứ giác nội tiếp nên \(\hat{QEA}=\hat{QKC}\) (cùng bù với \(\hat{QEC}\)); \(BFQK\) là tứ giác nội tiếp nên \(\hat{QFB}=\hat{QKC}\) (cùng bù với \(\hat{QKB}\)).
Suy ra: \(\hat{QFB}=\hat{QEA}\).
Lại có: \(\hat{QFB}+\hat{QFA}=180^o\) (kề bù) nên \(\hat{QEA}+\hat{QFA}=180^o\)
Đây là hai góc đối nhau nên tứ giác \(AFQE\) nội tiếp (đpcm).
(c) \(L\in\left(AEF\right)\) mà tứ giác \(AFQE\) nội tiếp (cmt), suy ra \(Q\in\left(AEF\right)\), hay tứ giác \(AFLQ\) nội tiếp.
Suy ra: \(\hat{FAL}=\hat{FQL}\) (hai góc cùng nhìn một cạnh), hay \(\hat{BAP}=\hat{FQL}\).
Mà ở câu a, \(\hat{BAP}=\hat{BCF}\Rightarrow\hat{BAP}=\hat{KCQ}\).
\(\Rightarrow\hat{KCQ}=\hat{FQL}\).
Hai góc này ở vị trí đồng vị nên \(QL\left|\right|CK\), mà \(CK\perp PQ\) (\(BC\) là đường trung trực của \(PQ\) (chứng minh ở a))
Do đó, \(QL\perp PQ\), tức \(\hat{PQL}=90^o\left(đpcm\right)\)