Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có BOC=120o ;BKC =60o suy ra BOC +BKC =1800 nên tứ giác BOCK nội tiếp đường tròn.
Ta có OB=OC=R suy ra OB= OC=> BKO= CKO hay KO là phân giác góc BKC theo phần (a) KA
a) Do AB // DE nên \(\widebat{AE}=\widebat{BD}\Rightarrow\widebat{AE}+\widebat{DC}=\widebat{BD}+\widebat{DC}=\widebat{BC}\)
Ta có \(\widehat{MIC}\) là góc có đỉnh nằm trong đường tròn nên \(\widehat{MIC}=\frac{\widebat{AE}+\widebat{DC}}{2}=\frac{\widebat{BC}}{2}\)
Góc \(\widehat{MBC}\) là góc tạo bởi tiếp tuyến và dây cung nên \(\widehat{MBC}=\frac{\widebat{BC}}{2}\)
Suy ra \(\widehat{MIC}=\widehat{MBC}\)
Xét tứ giác BMCI có \(\widehat{MIC}=\widehat{MBC}\) nên BMCI là tứ giác nội tiếp.
b) Ta có \(\widehat{MIC}=\widehat{MBC}\Rightarrow\Delta FIC\sim\Delta FBM\left(g-g\right)\)
\(\Rightarrow\frac{FI}{FB}=\frac{FC}{FM}\Rightarrow FI.FM=FB.FC\)
Ta cũng có \(\widehat{DBF}=\widehat{CEF}\Rightarrow\Delta BFD\sim\Delta EFC\left(g-g\right)\)
\(\Rightarrow\frac{FB}{FE}=\frac{FD}{FC}\Rightarrow FE.FD=FB.FC\)
Vậy nên \(FI.FM=FE.FD\)
c) Do PQ là đường kính nên \(\widehat{PTQ}=90^o\)
Suy ra \(\Delta FIQ\sim\Delta FTM\left(c-g-c\right)\Rightarrow\widehat{FTM}=\widehat{FIQ}\)
Lại có BIMC nội tiếp, BOCM cũng nội tiếp nên 5 điểm B, O, I, C, M cùng thuộc đường trong đường kính OM.
Suy ra \(\widehat{FIQ}=90^o\)
Vậy thì P, T, M thẳng hàng.
d) Ta thấy \(S_{IBC}=\frac{1}{2}BC.d\left(I,BC\right)\)
Do BC không đổi nên SIBC lớn nhất khi d(I; BC) lớn nhất.
Điều này xảy ra khi I trùng O hay tam giác ABC vuông tại B.
Vậy diện tích tam giác IBC lớn nhất khi AC là đường kính đường tròn (O).
Gọi IE,IF cắt đường tròn (O) lần thứ hai lần lượt tại H,K. Lúc đó ta có ^BIH = ^CIK = 900
=> ^BIH và ^CIK chắn nửa đường tròn (O) => BH,CK là các đường kính của (O)
Xét bộ 6 điểm A,B,C,H,I,K cùng nằm trên (O): BH cắt CK tại O, IH cắt AC tại E, IK cắt AB tại F
Suy ra 3 điểm E,O,F thẳng hàng (ĐL Pascal). Hay EF đi qua O cố định (đpcm).
P/S: Định lí Pascal khá nổi tiếng, bạn có thể tham khảo cách chứng minh trong các sách nâng cao (NC&PT Toán 9 tập 2).
a) Ta sẽ chứng minh SK đi qua điểm O cố định. Thật vậy, gọi OK cắt AP tại S', ta cần chứng minh S' trùng với S.
Ta có: ^CKF + ^BAC = ^CKF + ^CPE = ^CKF + ^CKE = 1800 => 3 điểm E,K,F thẳng hàng
Thấy ^FPE + ^PEF + ^PFE = ^BPC + ^PBK + ^CPK = ^OBP + ^OCP + ^PBK + ^CPK = ^OBK + ^OCK = 1800
=> Tứ giác BOCK nội tiếp. Mà OB = OC => ^BKO = ^CKO. Lại có: ^DKB = ^AEB = ^PKC
Suy ra: ^BKO - ^DKB = ^CKO - ^PKC => ^AKO = ^OKP
Mặt khác: ^AOK = ^AOB + ^BOK = 2.^ACB + ^BCK = ^ACK + ^ACB = ^BPK + ^APB = ^APK
=> Tứ giác AOPK nội tiếp => ^OAP = ^OKP => ^OAS' = ^OKA (Vì ^AKO = ^OKP)
=> \(\Delta\)OAS' ~ \(\Delta\)OKA (g.g) => OA2 = OS'.OK => OB2 = OS'.OK => \(\Delta\)OS'B ~ \(\Delta\)OBK (c.g.c)
=> ^OS'B = ^OBK. Tương tự: ^OS'C = ^OCK. Do đó: ^OS'B + ^OS'C = ^OBK + ^OCK = 1800 (Vì tứ giác BOCK nội tiếp)
=> 3 điểm B,S',C thẳng hàng => BC cắt AP tại S'. Vậy nên S trùng S' => 3 điểm O,S,K thẳng hàng => ĐPCM.
b) Từ câu a ta có: OD2 = OS.OK => \(\Delta\)ODS ~ \(\Delta\)OKD (c.g.c) => ^ODS = ^OKD = ^OKA = ^OAS
=> Tứ giác AOSD nội tiếp hay 4 điểm A,O,P,S cùng thuộc 1 đường tròn (1)
Ta lại có: ^CAP + ^PAD = ^CAD = ^CBD = ^BMD + ^BDM = ^SMD + ^BDQ = ^SMD + ^BAQ
Mà ^CAP = ^BAQ (gt) nên ^PAD = ^SMD hay ^SMD = ^SAD => 4 điểm A,S,D,M cùng thuộc 1 đường tròn (2)
Từ (1);(2) => 5 điểm A,O,S,P,M cùng thuộc 1 đường tròn. Do OA = OD nên ^AMO = ^DMO hay ^AMO = ^QMO
Xét \(\Delta\)AOQ cân tại O, một điểm M sao cho ^AMO = ^QMO (cmt). Dễ c/m AM = QM (Gợi ý: Lấy đối xứng của M qua OA)
Từ đó: OM là trung trực của AQ => OM vuông góc AQ (đpcm).