Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H E F S T M K' K O G L N
* Bổ đề 1: Xét tam giác ABC có trực tâm H, tâm ngoại tiếp O và đường tròn Euler \(\left(\omega\right)\). Một đường thẳng \(\Delta\)đi qua H và cắt \(\left(\omega\right)\);(O) lần lượt tại I,K. Khi đó I là trung điểm của HK. (Các bạn tự chứng minh)
* Bổ đề 2: Xét tam giác ABC cân tại A. Điểm M thỏa mãn ^AMB = ^AMC. Khi đó AM là trung trực của BC.
* Giải bài toán: Kẻ đường thẳng qua A vuông góc với HT, đường thẳng này cắt (O) tại K' khác A.
Gọi M là trung điểm BC, HT cắt đường tròn (MEF) và (O) lần lượt tại G và L (G thuộc cung FM nhỏ)
Do (MEF) là đường tròn Euler-9 điểm của \(\Delta\)ABC nên áp dụng Bổ đề 1 ta thu được GH = GL
Đồng thời, kết hợp với ĐL Reim ta cũng suy ra tứ giác GFTC nội tiếp
Từ đây ^CGH = ^HFE = ^CBH. Suy ra ^BCG = ^BHG = ^THE = ^CAK' = ^CBK' và ^BGC = ^CK'B (= 1800 - ^BAC)
Suy ra tứ giác CK'BG là hình bình hành. Từ đó GK',BC,HN cùng đi qua điểm M
Do vậy tứ giác GLNK' là hình bình hành (Vì GH = GL và cùng song song với NK')
Dẫn đến K'G = NL = K'T, suy ra AG = AT = AS (Vì AK' là trung trực của GT)
Ta thấy \(\Delta\)ASG cân tại A (cmt); ^ALS = ^ALG (Vì (AS = (AT ). Theo Bổ đề 2 thì AL vuông góc SG (1)
Ta lại có AL vuông góc LN; LN // GK' nên AL vuông góc GK' (2)
Từ (1) và (2) suy ra hai đường thẳng SG, GK' trùng nhau hay SM đi qua K'
Như vậy K' trùng K, đồng nghĩa với việc AK vuông góc với HT (đpcm).
Bài 1 : Bài giải
Hình tự vẽ //
a) Ta có DOC = cung DC
Vì DOC là góc ở tâm và DAC là góc chắn cung DC
=>DOC = 2 . AOC (1)
mà tam giác AOC cân =>AOC=180-2/AOC (2)
Từ (1) ; (2) ta được DOC + AOC = 180
b) Góc ACD là góc nội tiếp chắn nữa đường tròn
=>ACD=90 độ
c) c) HC=1/2*BC=12
=>AH=căn(20^2-12^2)=16
Ta có Sin(BAO)=12/20=>BAO=36.86989765
=>AOB=180-36.86989765*2=106.2602047
Ta có AB^2=AO^2+OB^2-2*OB*OA*cos(106.2602047)
<=>AO^2+OA^2-2OA^2*cos(106.2602047)=20^2
=>OA=12.5
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)
a, Tứ giác BDQH nội tiếp vì B D H ^ + B Q H ^ = 180 0
b, Vì tứ giác ACHQ nội tiếp =>
C
A
H
^
=
C
Q
H
^
Vì tứ giác ACDF nội tiếp => C A D ^ = C F D ^
Từ đó có C Q H ^ = C F D ^ mà 2 góc ở vị trí đồng vị => DF//HQ
c, Ta có H Q D ^ = H B D ^ (câu a)
H B D ^ = C A D ^ = 1 2 s đ C D ⏜
C A D ^ = C Q H ^ (ACHQ cũng nội tiếp)
=>
H
Q
D
^
=
H
Q
C
^
=> QH là phân giác
C
Q
D
^
Mặt khác chứng minh được CH là phân giác góc Q C D ^
Trong tam giác QCD có H là giao của ba đường phân giác nên H là tâm đường tròn nội tiếp => H cách đều 3 cạnh CD, CQ, DQ
d, Vì CMFN là hình chữ nhật nên MN và CF cắt nhau tại trung điểm của mỗi đường.
Trong tam giác FCD có MN//CD và MN đi qua trung điểm CF nên MN đi qua trung điểm DF
Mặt khác AB đi qua trung điểm của DF nên 3 đường thẳng MN, AB, DF đồng quy
bạn giải thích lại giúp mình câu b được không ạ? tại mình không hiểu câu đó lắm, mình cảm ơn!
1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)
~~~~~~~~~ Bài làm ~~~~~~~~~
A B C O I K H Q D
Ta có: \(\widehat{HBD}=\widehat{DAC}\) (Cùng phụ với \(\widehat{ACB}\))
\(\widehat{KBD}=\widehat{DAC}\)( Góc nối tiếp cùng chắn cung \(KC\))
\(\Rightarrow\widehat{HBD}=\widehat{KBD}\)
Ta lại có: \(BD\perp HK\)
\(\Rightarrow BD\) là đường trung trực của \(HK\)
\(\Rightarrow\Delta IHK\) cân tại \(I\)
\(\Rightarrow\widehat{BKD}=\widehat{BHD}=\widehat{AHQ}\)
Lại có:\(\widehat{DKO}=\widehat{HAO}\)( \(\Delta OKA\) cân tại \(O\))
Vì vậy: \(\widehat{DKO}+\widehat{BKD}=\widehat{HAO}+\widehat{AHQ}=90^0\)
\(\Rightarrow\widehat{KIO}=90^0\)
\(\Rightarrow IK\)là tiếp tuyến của đường tròn \(\left(O\right)\)
(Hình vẽ chỉ mang tính chất minh họa cái hình vẽ gần cả tiếng đồng hồ :)) )
A B C H D M E F P Q R S K I T O
Gọi I,T lần lượt là trung điểm HF, EF. Ta có \(\Delta FHD~\Delta FEC\)(g.g), trung tuyến tương ứng là DI,CT
Suy ra \(\widehat{ECT}=\widehat{HDI}\). Vì DI là đường trung bình \(\Delta HMF\) nên \(\widehat{HDI}=\widehat{HMF}=\widehat{ACQ}\)
Do đó \(\widehat{ECT}=\widehat{ACQ}\), suy ra C,T,Q thẳng hàng. Tương tự B,T,P thẳng hàng.
Mặt khác, theo một kết quả quen thuộc thì tứ giác EHFR điều hòa, suy ra RH là đường đối trung của \(\Delta REF\)
Lại có HS || EF vì cùng vuông góc OA. Suy ra (HF = (SE hay H,S đẳng giác trong \(\widehat{ERF}\)
Suy ra RS là trung tuyến của \(\Delta REF\) hay RS đi qua T.
Vậy RS,BP,CQ cùng đi qua T.