Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc OAD+góc OMD=180 độ
=>OADM nội tiếp
b: ΔOBC cân tại O
mà ON là đường cao
nên ONlà trung trực của BC
=>sđ cung NB=sd cung NC
=>góc BAN=góc CAN
=>AN là phân giác của góc BAC
góc DAI=1/2*sđ cung AN
góc DIA=1/2(sđ cung AB+sđ cung NC)
=1/2(sđ cung AB+sđ cung NB)
=1/2*sđ cung AN
=>góc DAI=góc DIA
=>ΔDAI cân tại D
a: Xét (O) có
\(\widehat{BAM}\) là góc nội tiếp chắn cung BM
\(\widehat{CAM}\) là góc nội tiếp chắn cung CM
\(\widehat{BAM}=\widehat{CAM}\)(AM là phân giác của góc BAC)
Do đó: \(sđ\stackrel\frown{BM}=sđ\stackrel\frown{CM}\)
=>MB=MC
=>M nằm trên đường trung trực của BC(1)
OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OM là đường trung trực của BC
=>OM\(\perp\)BC
b: Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
Xét (O) có
\(\widehat{ADC}\) là góc nội tiếp chắn cung AC
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{ADC}=\widehat{ABC}\)
Xét ΔACD vuông tại C và ΔAHB vuông tại H có
\(\widehat{ADC}=\widehat{ABH}\)
Do đó: ΔACD đồng dạng với ΔAHB
=>\(\widehat{CAD}=\widehat{HAB}\)
\(\widehat{BAH}+\widehat{HAM}=\widehat{BAM}\)
\(\widehat{CAD}+\widehat{MAD}=\widehat{CAD}\)
mà \(\widehat{BAH}=\widehat{CAD}\) và \(\widehat{BAM}=\widehat{CAD}\)
nên \(\widehat{HAM}=\widehat{MAD}\)
=>\(\widehat{IAM}=\widehat{DAM}\)
=>AM là phân giác của góc IAD
c: Xét (O) có
\(\widehat{IAM}\) là góc nội tiếp chắn cung IM
\(\widehat{DAM}\) là góc nội tiếp chắn cung DM
\(\widehat{IAM}=\widehat{DAM}\)
Do đó: \(sđ\stackrel\frown{IM}=sđ\stackrel\frown{DM}\)
=>IM=DM
=>M nằm trên đường trung trực của DI(3)
OI=OD
=>O nằm trên đường trung trực của DI(4)
Từ (3) và (4) suy ra OM là đường trung trực của DI
=>OM\(\perp\)DI
mà OM\(\perp\)BC
nên DI//BC
a: AM là phân giác của góc BAC
=>BM=CM
mà OB=OC
nên OM là trung trực của BC
=>OM vuông góc BC
b: Xét ΔHBA vuông tại H và ΔCDA vuông tại C có
góc HBA=góc CDA
=>ΔHBA đồng dạng với ΔCDA
=>góc BAH=góc DAC
=>góc IAM=góc DAM
=>AM là phân giác của góc IAD
c: AM là phân giác của góc IAD
nên sđ cung IM=sđ cung MD
=>IM=MD
=>OM là trung trực của ID
=>OM vuông góc ID
=>ID//BC
a: Xét tứ giác MNBD có
\(\widehat{BDM}+\widehat{BNM}=90^0+90^0=180^0\)
=>MNBD là tứ giác nội tiếp
=>\(\widehat{NBD}+\widehat{NMD}=180^0\)
mà \(\widehat{NBD}+\widehat{ABC}=180^0\)(hai góc kề bù)
nên \(\widehat{NMD}=\widehat{ABC}\left(1\right)\)
Xét (O) có
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
\(\widehat{AMC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{ABC}=\widehat{AMC}\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{NMD}=\widehat{AMC}\)
=>\(\widehat{NMA}=\widehat{CMA}\)
=>MA là phân giác của góc NMC
b: Ta có: NBDM là tứ giác nội tiếp
=>\(\widehat{DBM}=\widehat{DNM}\)
=>\(\widehat{MBC}=\widehat{ENM}\left(3\right)\)
Xét (O) có
\(\widehat{MBC}\) là góc nội tiếp chắn cung MC
\(\widehat{MAC}\) là góc nội tiếp chắn cung MC
Do đó: \(\widehat{MBC}=\widehat{MAC}\left(4\right)\)
Từ (3) và (4) suy ra \(\widehat{ENM}=\widehat{MAC}\)
=>\(\widehat{ENM}=\widehat{EAM}\)
=>ANME là tứ giác nội tiếp
=>\(\widehat{AEM}+\widehat{ANM}=180^0\)
=>\(\widehat{AEM}=90^0\)
=>ME\(\perp\)AC
1: góc AMO+góc ANO=180 độ
=>AMON nội tiếp
2: ΔOAB cân tại O
mà OM là đường cao
nên M là trung điểm của AB
ΔOAC cân tại O
mà ON là đường cao
nên N là trung điểm của AC
=>NM là đừog trung bình
=>MN//BC
=>MN//AE
=>AMNE là hình thang cân
=>AM=EN; AN=EM
ΔAHB vuông tại H có HM là trung tuyến
nên HM=AB/2=MA=MB
ΔHAC vuông tại H có HN là trung tuyến
nên HN=AN=CN=AC/2
=>HM=EN; HN=EM
=>HMEN là hình bbình hành
=>K làtrung điểm của MN
=>IK vuông góc MN
=>IK vuông góc BC
3: goc MDE+gó MDH=180 độ
=>góc MDE=góc MBH
=>BMDH nội tiếp
=>góc MDB=góc MHB=góc MBH
=>góc MDB=góc MDE
=>DM là phân giác của góc BDE
1: góc AMO+góc ANO=180 độ
=>AMON nội tiếp
2: Gọi giao EO và BC là P
AE//BC
AE vuông góc OE
=>OE vuông góc BC
=>OP vuông góc BC
=>P là trung điểm của BC
AEPH là hình chữ nhật
=>AE=PH
EJ giao BC=J
=>AE=JC
=>JC=HP
=>HJ=PC=BC/2=MN
=>HMNJ là hình bình hành
=>HM//NJ và HM=NJ
=>HM//EN và HM=EN
=>EMHN là hbh
=>K là trung điểm của MN
=>IK vuông góc MN
=>IK vuông góc BC
d: \(SA^2=SB\cdot SC\)
\(SE^2=SB\cdot SC\)
=>SA=SE
Xét ΔOAS và ΔOES có
OA=OE
SA=SE
OS chung
Do đó: ΔOAS=ΔOES
=>\(\widehat{OAS}=\widehat{OES}\)
mà \(\widehat{OAS}=90^0\)
nên \(\widehat{OES}=90^0\)
=>E nằm trên đường tròn đường kính SO
mà S,A,O,D cùng thuộc đường tròn đường kính SO(cmt)
nên E nằm trên đường tròn (SAOD)
a: M là điểm chính giữa của cung BC
=>\(sđ\stackrel\frown{MB}=sđ\stackrel\frown{MC}\) và MB=MC
Xét (O) có
\(\widehat{CAM}\) là góc nội tiếp chắn cung CM
\(\widehat{BAM}\) là góc nội tiếp chắn cung BM
\(sđ\stackrel\frown{CM}=sđ\stackrel\frown{BM}\)
Do đó: \(\widehat{CAM}=\widehat{BAM}\)
=>AM là phân giác của góc BAC
b: Xét (O) có
\(\widehat{SAC}\) là góc tạo bởi tiếp tuyến AS và dây cung AC
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{SAC}=\widehat{ABC}=\widehat{SBA}\)
Xét ΔSAC và ΔSBA có
\(\widehat{SAC}=\widehat{SBA}\)
\(\widehat{ASC}\) chung
Do đó: ΔSAC đồng dạng với ΔSBA
=>\(\dfrac{SA}{SB}=\dfrac{SC}{SA}\)
=>\(SA^2=SB\cdot SC\)
c: Xét (O) có
góc CKA là góc có đỉnh ở trong đường tròn chắn cung AC và BM
=>\(\widehat{CKA}=\dfrac{1}{2}\left(sđ\stackrel\frown{AC}+sđ\stackrel\frown{BM}\right)\)
=>\(\widehat{SKA}=\dfrac{1}{2}\left(sđ\stackrel\frown{AC}+sđ\stackrel\frown{CM}\right)=\dfrac{1}{2}\cdot sđ\stackrel\frown{AM}\)
mà \(\widehat{SAK}=\dfrac{1}{2}\cdot sđ\stackrel\frown{AM}\)(góc tạo bởi tiếp tuyến SA và dây cung AM)
nên \(\widehat{SAK}=\widehat{SKA}\)
=>SA=SK
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(1)
Ta có: MB=MC
=>M nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OM là đường trung trực của BC
=>OM\(\perp\)BC tại D
Xét tứ giác SAOD có
\(\widehat{SAO}+\widehat{SDO}=90^0+90^0=180^0\)
nên SAOD là tứ giác nội tiếp
=>S,A,D,O cùng thuộc một đường tròn
Vì AM là phân giác \(\angle BAC\Rightarrow\angle BAM=\angle CAM\Rightarrow\stackrel\frown{BM}=\stackrel\frown{CM}\)
\(\Rightarrow M\) là điểm chính giữa \(\stackrel\frown{BC}\Rightarrow OM\bot BC\)