Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc ADH+góc AKH=180 độ
=>ADHK nội tiếp
b: góc BKC=góc BDC=90 độ
=>BKDC nội tiếp
=>góc AKD=góc ACB
Xét ΔAKD và ΔACB có
góc AKD=góc ACB
góc A chung
=>ΔAKD đồng dạng với ΔACB
Cho tam giác nhọn ABC nội tiếp trong (O;R) có BD và CE là các đường cao. Cho góc A = 60 độ, tính theo R diện tích tứ giác OEAD
Có thể giải như sau:
Tam giác vuông ABD có ^BAD = 60o => AD = AB/2
Dễ thấy tg vuông ABD đồng dạng với tg vuông ACE => AD/AE = AB/AC => AD/AB = AE/AC => tg AED đông dạng tam giác ABC ( vì có chung góc A) => ED/BC = ADAB = 1/2 => ED = BC/2
Dễ tính được BC = RV3 => ED = RV3/2
Mặt khác : Vẽ đường kính AF => BF//CE (vì cùng _I_ với AB). Dễ thấy BCDE nội tiếp => ^BDE = ^BCE (cùng chắn cung BE) = ^CBF ( so le trong) = ^CAF (cùng chắn cung CF của (O) ) => AF _I_ DE ( vì đã có AD _I_ BD)
Vậy S(OEAD) = AO.ED/2 = R^2V3/4 => R = V(4SV3/3)
p/s:tham khảo
a) Xét tứ giác KEDC có
\(\widehat{KEC}\) và \(\widehat{KDC}\) là hai góc đối
\(\widehat{KEC}+\widehat{KDC}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: KEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Tâm của đường tròn này là trung điểm của KC
a: Xét tứ giác ADHK có
\(\widehat{ADH}+\widehat{AKH}=90^0+90^0=180^0\)
=>ADHK là tứ giác nội tiếp
Xét tứ giác BDKC có \(\widehat{BDC}=\widehat{BKC}=90^0\)
nên BDKC là tứ giác nội tiếp
b: Xét (O) có
\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{xAC}=\widehat{ABC}\)
mà \(\widehat{ABC}=\widehat{AKD}\left(=180^0-\widehat{DKC}\right)\)
nên \(\widehat{xAC}=\widehat{AKD}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên Ax//DK
c: Xét ΔABC có
BK,CD là các đường cao
BK cắt CD tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC tại M
Xét tứ giác HKCM có \(\widehat{HKC}+\widehat{HMC}=90^0+90^0=180^0\)
nên HKCM là tứ giác nội tiếp
=>\(\widehat{HKM}=\widehat{HCM}\)
mà \(\widehat{HCM}=\widehat{BAM}\left(=90^0-\widehat{ABM}\right)\)
nên \(\widehat{HKM}=\widehat{BAM}\)
mà \(\widehat{BAM}=\widehat{DKB}\)(ADHK là tứ giác nội tiếp)
nên \(\widehat{DKH}=\widehat{MKH}\)
=>\(\widehat{DKB}=\widehat{MKB}\)
=>KB là phân giác của góc DKM
a: Xét tứ giác ADHK có
ˆADH+ˆAKH=900+900=1800���^+���^=900+900=1800
=>ADHK là tứ giác nội tiếp
Xét tứ giác BDKC có ˆBDC=ˆBKC=900���^=���^=900
nên BDKC là tứ giác nội tiếp
b: Xét (O) có
ˆxAC���^ là góc tạo bởi tiếp tuyến Ax và dây cung AC
ˆABC���^ là góc nội tiếp chắn cung AC
Do đó: ˆxAC=ˆABC���^=���^
mà ˆABC=ˆAKD(=1800−ˆDKC)���^=���^(=1800−���^)
nên ˆxAC=ˆAKD���^=���^
mà hai góc này là hai góc ở vị trí đồng vị
nên Ax//DK
c: Xét ΔABC có
BK,CD là các đường cao
BK cắt CD tại H
Do đó: H là trực tâm của ΔABC
=>AH⊥⊥BC tại M
Xét tứ giác HKCM có ˆHKC+ˆHMC=900+900=1800���^+���^=900+900=1800
nên HKCM là tứ giác nội tiếp
=>ˆHKM=ˆHCM���^=���^
mà ˆHCM=ˆBAM(=900−ˆABM)���^=���^(=900−���^)
nên ˆHKM=ˆBAM���^=���^
mà ˆBAM=ˆDKB���^=���^(ADHK là tứ giác nội tiếp)
nên ˆDKH=ˆMKH���^=���^
=>ˆDKB=ˆMKB���^=���^
=>KB là phân giác của góc DKM
a: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
góc DCH=góc HCB=góc HAB=1/2*sđ cung BK
=góc DCK
b: Xét ΔBEI và ΔBME có
góc BEI=góc BME(=1/2*sđ cung BK)
góc EBI chung
=>ΔBEI đồng dạng với ΔBME
=>BE/BM=BI/BE
=>BE^2=BM*BI
a) Xét tứ giác KEDC có
\(\widehat{KEC}=\widehat{KDC}\left(=90^0\right)\)
\(\widehat{KEC}\) và \(\widehat{KDC}\) là hai góc cùng nhìn cạnh KC
Do đó: KEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a, Xét tứ giác KHCN có : góc CNK+CHK=90+90=180
=> KHCN nội tiếp đ.tr (O)
b, Xét tam giác CHM và AHB có :
góc AHB=CHM=90
góc BAH=MCH ( các góc ntiếp chắn các cung = nhau )
=> tam giác CHM đồng dạng với AHB
=> \(\frac{AH}{HB}=\frac{HC}{HM}\) <=> AH.HM=HB.HC
c, Kéo dài tia AO cắt (O) tại E
Ta có góc ACE=90 ( góc ntiếp chắn nửa đ.tr )
Góc AEC=ABC ( các góc ntiếp chắn các cung = nhau )
Tứ giác BDNC nội tiếp nên góc ABC=AND
Gọi giao điểm của OA và DN là I
=> góc ABC=ANI
Mà góc EAC+AEC=90 => ANI+NAI=90độ => OA vuông góc với DN
Mà OA vuông góc với xy nên xy//DN