K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2016

nhấn Đúng 0 phép màu sẽ hiện ra

31 tháng 1 2016

có ai giúp tui giải bài hình này ko 
mình cảm ơn rất nhiều

14 tháng 5 2017

đt simson

1: góc MDC=góc MEC=90 độ

=>MDEC nội tiếp

2: góc IBM=180 độ-góc ABM

=góc ACM=góc ECM=180 độ-góc EDM=góc IDM

=>IBDM nội tiếp

=>góc MIB+góc MDB=180 độ

=>góc MIB=90 độ

3:

Xét ΔAEM vuông tại E và ΔADC vuông tại D có

góc EAM chung

=>ΔAEM đồng dạng với ΔADC

=>AE/AD=AM/AC

=>AE*AC=AD*AM

Xét ΔADB vuông tại D và ΔAIM vuông tại I có

góc DAB chung

=>ΔADB đồng dạng với ΔAIM

=>AD/AI=AB/AM

=>AD*AM=AB*AI=AE*AC

a: Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

4 tháng 5 2018

tb. Kéo dài BH cắt AC tại K 

Vì H là điểm đối xứng của M qua BC (gt) => BC là đường trung trực của HM (định nghĩa đối xứng trục) => BH = BM (định lý thuận) => \(\Delta BHM\)cân tại B (định nghĩa) => BC là đường phân giác của \(\widehat{HBM}\)(định lý 1) => \(\widehat{CBM}=\widehat{CBH}\)\(=\widehat{CBK}\)(1)

Xét đường tròn (O) có: \(\widehat{CBM}=\widehat{CAM}(=\frac{1}{2}sđ\widebat{CM})\)(2)

Từ (1) và (2) => \(\widehat{CBK}=\widehat{CAM}=\widehat{CAD}\)(do A,D,M => \(\widehat{CAM}=\widehat{CAD}\)) (3)

Xét \(\Delta ACD\)có: \(\widehat{ACD}+\widehat{CAD}=90^o\)hay \(\widehat{KCB}+\widehat{CAD}=90^o\)(do A,K,C và B,D,C => \(\widehat{ACD}=\widehat{KCB}\)) (4)

Thay (3) vào (4) => \(\widehat{CBK}+\widehat{KCB}=90^o\)

Mà trong \(\Delta BCK\)thì : \(\widehat{CBK}+\widehat{KCB}+\widehat{BKC}=180^o\Rightarrow\widehat{BKC}=90^o\Rightarrow BK\perp AC\)=> BK là đường cao của \(\Delta ABC\)

Lại có H là giao điểm của AD và BK => H là trực tâm của \(\Delta ABC\)(đpcm)

c. Vì tứ giác BDME là tứ giác nội tiếp (cmt) => \(\widehat{MED}=\widehat{MBD}\left(=\frac{1}{2}sđ\widebat{MD}\right)\)\(\widehat{MBC}\)(do B,D,C ) = \(\widehat{MAC}\)\(\widehat{MAF}\)(do A,F,C )(5)

Tứ giác AEMF có: \(\widehat{AEM}+\widehat{AFM}=90^o+90^o=180^o\)(do ME\(\perp AB\)tại E (gt) => \(\widehat{AEM}=90^o\)và MF \(\perp AC\)tại F (gt) => \(\widehat{AFM}=90^o\)

=> Tứ giác AEMF là tứ giác nội tiếp( Dhnb) => \(\widehat{MEF}=\widehat{MAF}\)(cùng = \(\frac{1}{2}sđ\widebat{MF}\)) (6)

Từ (5) và (6) => \(\widehat{MED}=\widehat{MEF}\Rightarrow\)3 điểm E, D, F thẳng hàng (2 góc cùng số đo, có 1 cạnh chung, 2 cạnh còn lại nằm về 1 phía so với cạnh chung thì 2 cạnh còn lại trùng nhau) => Đpcm