Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BDHF có
góc BDH+góc BFH=180 độ
=>BDHF là tứ giác nội tiếp
b: Xét tứ giác BFEC có
góc BFC=góc BEC=90 độ
=>BFEC là tứ giác nội tiếp
c: Xét ΔHAF vuông tại F và ΔHCD vuông tại D có
góc AHF=góc CHD
=>ΔHAF đồng đạng với ΔHCD
=>HA/HC=HF/HD
=>HA*HD=HF*HC
Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng vơi ΔHEC
=>HF/HE=HB/HC
=>HF*HC=HB*HE=HA*HD
d: Xét ΔAEF và ΔABC có
góc AEF=góc ABC
góc FAE chung
=>ΔAEF đồng dạng với ΔABC
a: Sửa đề: BFEC
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
b: góc ABK=1/2*sđ cung AK=90 độ
góc BAK=góc BAD+góc DAK
góc DAC=góc DAK+góc CAK
mà góc BAD=góc CAK
nên góc BAK=góc DAC
Xét ΔABK vuông tại B và ΔADC vuông tại D có
góc BAK=góc DAC
=>ΔABK đồng dạng với ΔADC
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC
Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)
hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
\(\widehat{FAC}\) chung
Do đó: ΔAEF\(\sim\)ΔABC
Xét (O) có
\(\widehat{ABC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)
\(\widehat{AKC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)
Do đó: \(\widehat{ABC}=\widehat{AKC}\)(Hệ quả góc nội tiếp)
hay \(\widehat{ABD}=\widehat{AKC}\)
Xét (O) có
\(\widehat{ACK}\) là góc nội tiếp chắn \(\stackrel\frown{AK}\)
\(sđ\stackrel\frown{AK}=180^0\)(AK là đường kính)
Do đó: \(\widehat{ACK}=90^0\)(Hệ quả góc nội tiếp)
Xét ΔADB vuông tại D và ΔACK vuông tại C có
\(\widehat{ABD}=\widehat{AKC}\)
Do đó: ΔADB\(\sim\)ΔACK(g-g)
giúp em vs ạ https://hoc24.vn/hoi-dap/tim-kiem?id=7957785622206&q=Cho+tam+gi%C3%A1c+ABC+nh%E1%BB%8Dn+n%E1%BB%99i+ti%E1%BA%BFp+(O;R).+%C4%90%C6%B0%E1%BB%9Dng+cao+AD,+BE,+CF+c%E1%BA%AFt+nhau+t%E1%BA%A1i+H.+CMR+:+N%E1%BA%BFu+AD+BC=BE+AC=CF+AB+th%C3%AC+tam+gi%C3%A1c+ABC+%C4%91%E1%BB%81u.
a: Xét tứ giác BCEF có
\(\widehat{BFC}=\widehat{BEC}\)
nên BCEF là tứ giác nội tiếp
Xét tứ giác CDHE có
\(\widehat{HDC}+\widehat{HEC}=180^0\)
Do đó: CDHE là tứ giác nội tiếp
a) \(\widehat{CBH}=\widehat{DAC}\) (cùng phụ với \(\widehat{ACB}\))
\(\widehat{KBC}=\widehat{KAC}\) (cùng chắn cung KC)
Suy ra \(\widehat{KBC}=\widehat{CBH}\).
Xét tam giác BHK có \(\widehat{BCK}=\widehat{BCH},BD\perp HK\)
Vậy tam giác BHK cân tại B và BC là trung trực của HK.
b) Vì AM là đường kính nên \(\widehat{ACM}=90^o\).
\(\widehat{ABC}=\widehat{AMC}\) (cùng chắn cung AC)
Xét hai tam giác ABD và AMC có:
\(\left\{{}\begin{matrix}\widehat{D}=\widehat{C}=90^o\\\widehat{ABD}=\widehat{AMC}\end{matrix}\right.\) Vậy tam giác ABD đồng dạng với tam giác AMC (g.g).
Ta có từ giác BFEC nội tiếp ( vì có góc BFC = BEC = 90 độ).
Suy ra góc ABC = AEF => góc AEF = góc AMC.
Mà \(\widehat{AMC}+\widehat{CAM}=90^o\Rightarrow\widehat{AEF}+\widehat{CAM}=90^o\\ \Rightarrow AO\perp EF.\)
d) Xét hai tam giác AEQ và AMC đồng dạng ta sẽ có được AQ.AM = AE.AC.
a: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
góc CDH+góc CEH=90+90=180 độ
=>CDHE nội tiếp
b: góc AFH+góc AEH=180 độ
=>AFHE nội tiếp
góc FEH=góc BAD
góc DEH=góc FCB
mà góc BAD=góc FCB
nên góc FEH=góc DEH
=>EH là phân giác của góc FED
Xét ΔBFE và ΔDHE có
góc BEF=góc DEH
góc BFE=góc DHE
=>ΔBFE đồng dạng với ΔDHE
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
=>góc AFE=góc ACB
Xét ΔAFE và ΔACB có
góc AFE=góc ACB
góc A chung
=>ΔAFE đồng dạng vơi ΔACB