Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Có :\(\widehat{EBD}=\widehat{BAD}\)(cùng chắn \(\stackrel\frown{BD}\))
\(\widehat{BED}\):chung
\(\Rightarrow\Delta EBD\sim\Delta EAB\left(gg\right)\)
\(\Rightarrow\dfrac{BE}{ED}=\dfrac{EA}{BE}\)\(\Rightarrow EB^2=ED.EA\)(đpcm)
Xét \(\Delta EDC\) và \(\Delta EAC\), có:
\(\widehat{DEC}\):chung;
\(\widehat{ECD}=\widehat{DAC}\)(cùng chắn \(\stackrel\frown{CD}\))
\(\Rightarrow\Delta EDC\sim\Delta ECA\left(gg\right)\)
\(\Rightarrow\dfrac{ED}{EC}=\dfrac{CD}{AC}\)và EB=EC(t/c 2 tt cắt nhau)
Có \(\Delta EBD\sim\Delta EAB\)
\(\Rightarrow\dfrac{BD}{AB}=\dfrac{ED}{EB}\)
\(\Rightarrow\dfrac{CD}{AC}=\dfrac{ED}{EB}=\dfrac{BD}{AB}\Rightarrow\dfrac{AB}{BD}=\dfrac{AC}{CD}\)
b)Có ABDC nt( \(A,B,D,C\in\left(O\right)\))(1)
Có xy//d(gt)
\(\Rightarrow\widehat{xAP}=\widehat{BPE}\)(SLT)
Có \(\widehat{ADB}=\widehat{xAP}\)(cùng chắn \(\stackrel\frown{AB}\))
\(\Rightarrow\widehat{BPE}=\widehat{ADB}\)\(\Rightarrow\)BDEP nt\(\Rightarrow B,D,E,P\)thuộc 1 đường tròn(2)
Có xy//d
\(\Rightarrow\widehat{CAy}=\widehat{CQE}\)(SLT)
Có: \(\widehat{CAy}=\widehat{ADC}\)(cùng chắn \(\stackrel\frown{AC}\))
\(\Rightarrow\widehat{CQE}=\widehat{ADC}\Rightarrow\)CDEQ nt\(\Rightarrow\)C,D,E,Q thuộc 1 đường tròn(3).
Từ (1),(2),(3)\(\Rightarrow\)Đường tròn ngoại tiếp (ABDC),(BDEP),(CDEQ) cùng đi qua D.
Mà tâm đường tròn ngoại tiếp (ABDC) cũng là tâm đường tròn ngoại tiếp (ABC).
Mà tâm đường tròn ngoại tiếp (BDEP) cũng là tâm đường tròn ngoại tiếp (BEP).
Mà tâm đường tròn ngoại tiếp (CDEQ) cũng là tâm đường tròn ngoại tiếp (CEQ).
Vậy đường tròn ngoại tiếp (ABC),(BEP).(CEQ) cùng đi qua D.
Giải gấp em câu d) ạ.
Đường tròn c: Đường tròn qua B_1 với tâm O Đường thẳng q: Tiếp tuyến của c qua A Đường thẳng q: Tiếp tuyến của c qua A Đoạn thẳng h: Đoạn thẳng [A, E] Đoạn thẳng i: Đoạn thẳng [B, E] Đoạn thẳng j: Đoạn thẳng [C, E] Đoạn thẳng k: Đoạn thẳng [O, C] Đoạn thẳng l: Đoạn thẳng [O, B] Đoạn thẳng m: Đoạn thẳng [A, B] Đoạn thẳng n: Đoạn thẳng [A, C] Đoạn thẳng p: Đoạn thẳng [B, D] Đoạn thẳng a: Đoạn thẳng [B, P] Đoạn thẳng b: Đoạn thẳng [C, Q] Đoạn thẳng d: Đoạn thẳng [P, Q] Đoạn thẳng g_1: Đoạn thẳng [B, C] Đoạn thẳng i_1: Đoạn thẳng [M, A] Đoạn thẳng k_1: Đoạn thẳng [O, M] O = (-0.28, -0.29) O = (-0.28, -0.29) O = (-0.28, -0.29) Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm E: Giao điểm của f, g Điểm E: Giao điểm của f, g Điểm E: Giao điểm của f, g Điểm D: Giao điểm của c, h Điểm D: Giao điểm của c, h Điểm D: Giao điểm của c, h Điểm P: Giao điểm của r, s Điểm P: Giao điểm của r, s Điểm P: Giao điểm của r, s Điểm Q: Giao điểm của r, t Điểm Q: Giao điểm của r, t Điểm Q: Giao điểm của r, t Điểm M: Trung điểm của g_1 Điểm M: Trung điểm của g_1 Điểm M: Trung điểm của g_1 Điểm F: Giao điểm của e, d Điểm F: Giao điểm của e, d Điểm F: Giao điểm của e, d
a. Ta thấy ngay tứ giác OBEC có hai góc vuông đối nhau nên nó là tứ giác nội tiếp.
b. Câu này cô thấy cần sửa đề thành AB.AP = AD.AE mới đúng.
Gọi Aq là tiếp tuyến tại A của đường tròn (O). Khi đó ta có: \(\widehat{APE}=\widehat{BAq}\) (so le trong)
Mà \(\widehat{BAq}=\widehat{BDA}\) (Cùng chắn cung BA) nên \(\widehat{APE}=\widehat{BDA}\)
Vậy thì \(\Delta ABD\sim\Delta AEP\left(g-g\right)\Rightarrow\frac{AB}{AE}=\frac{AD}{AP}\Rightarrow AB.AP=AE.AD\)
c. +) Ta thấy \(\Delta BDE\sim\Delta ABE\left(g-g\right)\Rightarrow\frac{BD}{AB}=\frac{BE}{AE}\)
Tương tự \(\Delta CDE\sim\Delta ACE\left(g-g\right)\Rightarrow\frac{CD}{AC}=\frac{DE}{AE}\)
Mà BE = CE nên \(\frac{BD}{AB}=\frac{CD}{AC}\)
Lại có \(\Delta ABD\sim\Delta AEP\left(g-g\right)\Rightarrow\frac{BD}{EP}=\frac{AB}{AE}\Rightarrow EP=\frac{BD.AE}{AB}\)
Tương tự \(\Delta ACD\sim\Delta AEQ\left(g-g\right)\Rightarrow\frac{AC}{AE}=\frac{CD}{EQ}\Rightarrow EQ=\frac{CD.AE}{AC}=\frac{BD.AE}{AB}=EP\)
Vậy EP = EQ.
+) Ta thấy ngay \(\Delta ABC\sim\Delta AQP\Rightarrow\frac{BC}{QP}=\frac{AC}{AP}\Rightarrow\frac{BC:2}{QP:2}=\frac{AC}{QP}\)
\(\Rightarrow\frac{MC}{PE}=\frac{AC}{AP}\)
Lại có \(\widehat{ACM}=\widehat{APE}\) (Cùng bằng \(\widehat{BDA}\))
Từ đó suy ra \(\Delta AMC\sim\Delta AEP\Rightarrow\widehat{MAC}=\widehat{PAE}\)
d. Ta có BD.AC = AB.CD
Lại có do ABCD là tứ giác nội tiếp nên
AD.BC = AB.CD + AC.BD = 2AB.CD (Định lý Ptoleme) \(\Rightarrow2MC.AD=2AB.CD\Rightarrow MC.AD=AB.CD\)
\(\Rightarrow\frac{MC}{AB}=\frac{CD}{AD}\)
Lại thấy \(\widehat{BAD}=\widehat{BCD}\Rightarrow\Delta BAD\sim\Delta MCD\left(c-g-c\right)\)
Mà \(\Delta BAD\sim\Delta MAC\Rightarrow\Delta MCD\sim\Delta MAC\)
\(\Rightarrow\frac{MC}{MA}=\frac{MD}{MC}\Rightarrow MA.MD=MC^2=\frac{BC^2}{4}.\)
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.