K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2020

tự làm

10 tháng 8 2017

b)    CD đi qua trung điểm của đường cao AH của D ABC

· Gọi F là giao của BD CA.

Ta có BD.BE= BA.BM (cmt)

= > B D B A = B M B E = > Δ B D M ~ Δ B A E ( c − g − c ) = > B M D = B E A

Mà BCF=BEA(cùng chắn AB)

=>BMD=BCF=>MD//CF=>D là trung điểm BF

· Gọi T là giao điểm của CD AH .

DBCD TH //BD  = > T H B D = C T C D  (HQ định lí Te-let) (3)

DFCD TA //FD  = > T A F D = C T C D  (HQ định lí Te-let) (4)

BD= FD (D là trung điểm BF ) (5)

· Từ (3), (4) và (5) suy ra TA =TH ÞT là trung điểm AH .

25 tháng 5 2018

Giờ mình ko rảnh và máy tính đanhg hư nên ko làm đc thông cảm nhá

25 tháng 5 2018

HD

image006

Câu 1.

Tự CM.

Câu 2:

Kẻ AO cắt đường tròn tại F

Để ý góc ADE=góc EBC=góc AFC

Mà góc CAF+góc FAC =90°

⇒góc ADE+góc FAC =90°hay AF ⊥ DE.

Vậy đường thẳng kẻ qua A vuông góc DE luôn đi qua điểm cố định O.

Câu 3:

Gọi giao CQ và BP là O’

Dễ thấy góc ABP=góc QCE (cùng bằng 1/2 góc ABD = 1/2 góc ACE)

⇒ góc ABP+góc QCE=90° hay BP ⊥ CQ tại O’

⇒ các ΔBQN,  ΔCMP có đường phân giác đồng thời là đường cao nên cân tại B và C

⇒ O’M=O’P; O’N=O’Q; lại có QN ⊥ MP, nên tứ giác MNPQ là hình thoi