Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác AEHF có
\(\widehat{AFH}\) và \(\widehat{AEH}\) là hai góc đối
\(\widehat{AFH}+\widehat{AEH}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
\(\widehat{BFC}\) và \(\widehat{BEC}\) là hai góc cùng nhìn cạnh BC
Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a: góc AFH+góc AEH=180 độ
=>AEHF nội tiếp
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
b: BFEC nội tiếp
=>góc IBF=góc IEC
Xét ΔIBF và ΔIEC có
góc IBF=góc IEC
góc I chung
=>ΔIBF đồng dạng với ΔIEC
=>IB/IE=IF/IC
=>IB*IC=IE*IF
Lời giải:
a) Vì $SB, SC$ là tiếp tuyến $(O)$ nên $SB\perp OB, SC\perp OC$
$\Rightarrow \widehat{OBS}=\widehat{OCS}=90^0$
Tứ giác $SBOC$ có tổng 2 góc đối nhau $\widehat{OBS}+\widehat{OCS}=90^0+90^0=180^0$ nên $SBOC$ là tứ giác nội tiếp.
b)
$\widehat{BEC}=\widehat{BFC}=90^0$ và cùng nhìn cạnh $BC$ nên $BFEC$ là tứ giác nội tiếp
$\Rightarrow \widehat{IFB}=\widehat{AFE}=\widehat{ACB}(1)$
Mà:
$\widehat{IBF}=\widehat{IBA}=\widehat{ACB}(2)$ (góc nt tạo bởi tiếp tuyến và dây cung thì bằng góc nội tiếp chắn cung đó)
Từ $(1);(2)\Rightarrow \widehat{IFB}=\widehat{IBF}$
$\Rightarrow \triangle IFB$ cân tại $I$
$\Rightarrow IF=IB$
c)
$\widehat{FAK}=\widehat{BAO}=\frac{180^0-\widehat{AOB}}{2}=90^0-\widehat{ACB}=\widehat{CAD}(3)$
$\widehat{AFK}=\widehat{AFE}=\widehat{ACB}=\widehat{ACD}(4)$
Từ $(3);(4)\Rightarrow \triangle AFK\sim \triangle ACD$ (g.g)
$\Rightarrow \frac{AF}{AC}=\frac{FK}{CD}(*)$
Mặt khác:
Dễ thấy $\triangle AFE\sim \triangle ACB$ (g.g)
$\Rightarrow \frac{AF}{AC}=\frac{FE}{CB}(**)$
Từ $(*);(**)\Rightarrow \frac{FK}{CD}=\frac{EF}{BC}$
$\Rightarrow FK.BC=EF.CD$ (đpcm)
Mình làm câu cuối nhá bài này dễ ợt ý mà
Gọi góc BAC = ♪ ( cho sinh độg) =))
Thì góc BHC = 180 – ♪
Vì D là trung điểm MH => ∆ CMH cân
=> ∆ CMB = ∆ CHB (c.c.c)
=> Góc CMB bằng góc CHB = 180 – ♪
Mà A,H,D thẳng hàng và H Đối xứng với M qua trục BC
Đến đây đủ để kết luận là
Đường tròn ở sẽ đối xứng với đường tròn ngoại tiếp ∆ BHC
Nên (O) =(I)
= 2πR
Với I là tâm
a)
Vì \(\widehat{HFB}+\widehat{HDB}=180^o\)=> Tứ giác BFHD nội tiếp
Vì \(\widehat{BFC}=\widehat{BEC}=90^o\)=> Tứ giác BFEC nội tiếp
b) Xét tam giác BDH và tam giác BEC có: \(\widehat{BDH}=\widehat{BEC}=90^o\), \(\widehat{B_1}\)chung
=> Tam giác BDH đồng dạng tam giác BEC
=> \(\frac{BD}{BH}=\frac{BE}{BC}\)=> BD.BC=BE.BH
c) \(\widehat{BCM}=\widehat{BAM}\)( cùng chắn cung BM của đường tròn (O)) (1)
vì \(\widehat{ADC}=\widehat{CFA}=90^o\)=> Tứ giác AFDC nội tiếp
=> \(\widehat{FAD}=\widehat{FCD}\) hay \(\widehat{BAM}=\widehat{HCB}\) (2)
Từ (1) , (2)
=> \(\widehat{BCM}=\widehat{BCH}\)=> CD là đường phân giác của tam giác HCM mà CD cũng là đường cao
=> HCM cân tại C=> D là trung điểm HM
c) Câu hỏi của Nguyễn Vy - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo link này nhé!
củm ơn pẹn