Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AMB và tam giác DMC có:
BM = CM (gt)
AM =DM (gt)
\(\widehat{AMB}=\widehat{DMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)
b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)
Chúng lại ở vị trí so le trong nên AB //CD.
c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.
Suy ra MA = ME
Lại có MA = MD nên ME = MD.
d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.
Suy ra ED // BC
Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.
Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)
Bài 1 :
Kẻ dường thẳng x đi qua trung điểm H của ED và BC => cần chứng minh x⊥ED
Lấy điểm I trên x sao cho DI=EI ( I nằm trên nửa mặt chứa A bờ ED )
=>ΔIEH = ΔIDH (= c.c.c)
=>EHI=IHD=180o : 2=90o
=>đpcm
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
góc EBC=góc DCB
=>ΔEBC=ΔDCB
=>BE=DC
=>AE=AD
b: Xét ΔAEI vuông tại E và ΔADI vuông tại D có
AI chung
AE=AD
=>ΔAEI=ΔADI
=>góc EAI=góc DAI
=>AI là phân giác của góc BAC
c: ΔABC cân tại A
mà AM là trung tuyến
nên AM là phân giác của góc BAC
=>A,I,M thẳng hàng
`a,`
Vì `\Delta ABC` cân tại A
`-> \text {AB = AC, }` $\widehat {B} = \widehat {C}$
Xét `2\Delta` vuông và `BEC` và `CDB`:
`\text {BC chung}`
$\widehat {B} = \widehat {C}$
`=> \Delta BEC = \Delta CDB (ch-gn)`
`-> \text {BE = CD (2 cạnh tương ứng)}`
`b,`
Ta có: \(\left\{{}\begin{matrix}\text{AB = AE + BE}\\\text{AC = AD + CD}\end{matrix}\right.\)
Mà \(\left\{{}\begin{matrix}\text{AB = AC}\\\text{BE = CD}\end{matrix}\right.\)
`-> \text {AE = AD}`
Xét `2\Delta` vuông `AEI` và ` ADI`:
`\text {AE = AD}`
`\text {AI chung}`
`=> \Delta AEI = \Delta ADI (ch-cgv)`
`->` $\widehat {EAI} = \widehat {DAI} (\text {2 góc tương ứng})$
`-> \text {AI là tia phân giác của}` $\widehat {EAD}$
Mà \(\text{E}\in\text{AB, D}\in\text{AC}\)
`-> \text {AI là tia phân giác của}` $\widehat {BAC}$ `(1)`
`c,`
Vì M là trung điểm của AC
`-> \text {AM là đường trung tuyến của} \Delta ABC` `(2)`
Từ `(1)` và `(2)`
`-> \text {Ba điểm A, I, M thẳng hàng.}`
hình tự vẽ nha :)
a) Trong tam giác vuông DBC và EBC, ta có:
EM là đường trung tuyến kẻ từ E => EM=1/2BC (1) ( tính chất của đường trung tuyến trong tam giác vuông)
DM là trung tuyến kẻ từ D => DM=1/2BC (2)
Từ (1) và (2) suy ra EM=DM=1/2BC
b)Từ câu a) ta có EM=DM => tam giác MED cân tại M
Mà H là trung điểm ED => MH vuông góc với ED (Trong một tam giác cân trung điểm của cạnh đáy là chân đường cao hạ từ đỉnh)
c) Trong tam giác cân MDC ( MD=MC) ta có K là trung điểm DC => MK vuông góc với DC
Tương tự ở tam giác cân EMB=> Im vuông góc với EB
Để chứng minh MI=MK thì ta sẽ chứng minh tam giác IMB= tam giác KMC
Xét hai tam giác IMB và KMC, có
BM=MC (gt)
tam giác IMB= tam giác KMC thì góc B = góc C ( ch-gn)
Vậy để MI=MK thì tam giác ABC là tam giác cân tại A