Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: D đối xứng với M qua AB
=> AB là đường trung trực của MD
Xét tam giác AMD có:
AB là đường trung trực của MD(cmt)
=> Tam giác AMD cân tại A
=> AB là tia phân giác \(\widehat{MAD}\Rightarrow\widehat{MAD}=2\widehat{BAD}\)
CMTT => AC là tia phân giác \(\widehat{DAN}\Rightarrow\widehat{DAN}=2\widehat{DAC}\)
Ta có: \(\widehat{MAN}=\widehat{MAD}+\widehat{DAN}=2\left(\widehat{BAD}+\widehat{DAC}\right)=2\widehat{BAC}\)
=> \(\widehat{MAN}\) có số đo không đổi
a: Ta có: D đối xứng với M qua AB
nên AB là đường trung trực của MD
Suy ra: AM=AD
Xét ΔAMD có AM=AD
nên ΔAMD cân tại A
mà AB là đường trung trực ứng với cạnh đáy MD
nên AB là tia phân giác của \(\widehat{MAD}\)
Ta có: D và N đối xứng nhau qua AC
nên AC là đường trung trực của ND
Suy ra: AN=AD
Xét ΔAND có AN=AD
nên ΔAND cân tại A
mà AC là đường trung trực ứng với cạnh đáy DN
nên AC là tia phân giác của \(\widehat{DAN}\)
Ta có: \(\widehat{MAN}=\widehat{MAD}+\widehat{NAD}\)
\(=2\cdot\left(\widehat{BAD}+\widehat{CAD}\right)\)
\(=2\cdot\widehat{BAC}\)
a. Ta có \(M,D\) đối xứng qua \(AB\)
\(\rightarrow AD=AM\)
Lại có \(M,E\) đối xứng qua \(AC\rightarrow AM=AE\)
\(\rightarrow AD=AE\rightarrow\Delta ADE\) CÂN
b. Ta có \(M,D\) đối xứng qua \(AB,I\in AB\)
\(\rightarrow\widehat{IMA}=\widehat{IDA}=\widehat{ADE}\)
Tương tự \(\widehat{KMA}=\widehat{KEA}=\widehat{DEA}\)
Mà \(\Delta ADE\) cân tại \(A\)
\(\rightarrow\widehat{ADE}=\widehat{AED}\)
\(\rightarrow\widehat{IMA}=\widehat{KMA}\)
a: Ta có: D và E đối xứng nhau qua AB
nên AD=AE
=>ΔADE cân tại A
mà AB là đường cao
nên AB là phân giác của góc EAD(1)
Ta có: D và F đối xứng nhau qua AC
nên AD=AF
=>ΔADF cân tại A
=>AC là phân giác của góc DAF(2)
Ta có: AE=AD
AF=AD
Do đó: AE=AF
b: Từ (1) và (2) suy ra góc EAF=2xgóc BAC=120 độ
c: Xét ΔADM và ΔAEM có
AD=AE
góc DAM=góc EAM
AM chung
DO đó: ΔADM=ΔAEM
SUy ra: góc ADM=góc AEM(3)
Xét ΔADN và ΔAFN có
AD=AF
góc DAN=góc FAN
AN chung
Do đó; ΔADN=ΔAFN
Suy ra: góc ADN=góc AFN(4)
Từ (3) và (4) suy ra góc ADM=góc ADN
hay DA là phân giác của góc MDN
a) Ta có: E và D đối xứng nhau qua AB(gt)
nên AB là đường trung trực của ED
hay AE=AD(1) và BD=BE
Ta có: D và F đối xứng nhau qua AC(gt)
nên AC là đường trung trực của DF
hay AD=AF(2) và CD=CF
Từ (1) và (2) suy ra AE=AF
b) Xét ΔAEB và ΔADB có
AE=AD(cmt)
AB chung
BE=BD(cmt)
Do đó: ΔAEB=ΔADB(c-c-c)
Suy ra: \(\widehat{EAB}=\widehat{DAB}\)(hai góc tương ứng)
Xét ΔADC và ΔAFC có
AD=AF(cmt)
AC chung
CD=CF(cmt)
Do đó: ΔADC=ΔAFC(c-c-c)
Suy ra: \(\widehat{DAC}=\widehat{FAC}\)(hai góc tương ứng)
Ta có: \(\widehat{EAF}=\widehat{EAB}+\widehat{BAD}+\widehat{CAD}+\widehat{FAC}\)
\(=2\cdot\left(\widehat{BAD}+\widehat{CAD}\right)\)
\(=2\cdot60^0=120^0\)
Ta có: M và D đối xứng nhau qua AB
nên AB là đường trung trực của MD
Suy ra: AD=AM
Xét ΔADM có AD=AM(cmt)
nên ΔADM cân tại A(Định nghĩa tam giác cân)
mà AB là đường trung trực ứng với cạnh đáy MD(gt)
nên AB là tia phân giác của \(\widehat{MAD}\)
Ta có: D và N đối xứng nhau qua AC(gt)
nên AC là đường trung trực của DN
Suy ra: AD=AN
Xét ΔADN có AD=AN(cmt)
nên ΔADN cân tại A(Định nghĩa tam giác cân)
mà AC là đường trung trực ứng với cạnh đáy DN(gt)
nên AC là tia phân giác của \(\widehat{DAN}\)
Ta có: \(\widehat{MAN}=\widehat{MAD}+\widehat{NAD}\)
\(=2\cdot\widehat{BAD}+2\cdot\widehat{CAD}\)
\(=2\cdot\widehat{BAC}\)