K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2018

https://diendantoanhoc.net/topic/88167-tim-v%E1%BB%8B-tri-c%E1%BB%A7a-i-d%E1%BB%83-al2bh2ck2-nh%E1%BB%8F-nh%E1%BA%A5t/

31 tháng 3 2015

a, xét tứ giác AIHM có:

MI vuông góc vs AB=>góc MIA=900

BH vuông góc vs AC=>góc AHM=900

=>góc AIM=AHM

=>tứ giác AIHM nt

=>I,A,H,M cùng thuộc 1 đường tròn

CHo nửa đường tròn tâm O đường Kính AB. Vẽ 2 tiếp tuyến Ax và By cùng nửa mặt phẳng vs đường tròn. Lấy M trên nửa đường tròn. Tiếp tuyến tại M cắt Ax và By tại C, D.tìm vị trí của M để AC+BD nhỏ nhấtAM song song với ODgọi I, N là giao điểm của AM với CO, BM với OD. CMR tứ giác MION là hình chữ nhậtAB tiếp xúc với đường tròn đường kính CDIN là đường trung bình tam giác MABgọi I' là...
Đọc tiếp

CHo nửa đường tròn tâm O đường Kính AB. Vẽ 2 tiếp tuyến Ax và By cùng nửa mặt phẳng vs đường tròn. Lấy M trên nửa đường tròn. Tiếp tuyến tại M cắt Ax và By tại C, D.

  1. tìm vị trí của M để AC+BD nhỏ nhất
  2. AM song song với OD
  3. gọi I, N là giao điểm của AM với CO, BM với OD. CMR tứ giác MION là hình chữ nhật
  4. AB tiếp xúc với đường tròn đường kính CD
  5. IN là đường trung bình tam giác MAB
  6. gọi I' là giao điểm của OM với Ax. CMR: I'C.OD = I'O.CO
  7. Tam giác AMB là tam giác vuông
  8. tam giác IAO đồng dạng với tam giác NOB
  9. Gọi R là bán kính của (O), r là bán kính đường tròn nội tiếp tam giác COD.CMR: 2<R/r<3
  10. Gọi K là giao điểm của AD với BC. MK cắt AB tại H. CMR: MH vuông góc với AB
  11. Tìm vị trí của M để tam giác MHO lớn nhất
  12. kéo dài CO cắt DB tại Q. CMR: tam giác DCQ cân tại D
  13. Gọi D', E', F' là giao điểm của CD với AB, BM với Ax, D'E' với By. CMR: A, M, F' thẳng hàng
  14. 2MH2 = MA.MB
  15. CB,AD,IN,MH đồng quy
  16. gọi L là giao điểm của EA và DO. CMR: DEL là tam giác cân
0

3. C/m: H,I,F thẳng hàng: Tứ giác HBMI nội tiếp ( vì I ,H cùng nhìn BM dưới 1 góc ngoài )

=>Góc HIB = góc HMB (1)

Tứ giác MICF nội tiếp ( góc I + góc F = 1800 )

=> Góc CIF = góc CMF (2)

Tứ giác ABMC nt ( O )

=> góc BAC + góc BMC = 1800

=> góc BAC + góc BMH + góc HMC = 1800 (3)

Tứ giác AHMF nội tiếp ( góc H + góc F = 1800 )

=> Góc HAC + góc HMF = 1800

=> Góc HAC + góc HMC + CMF = 1800 (4)

Từ (3), (4) => Góc BMH = Góc CMF (5)

Từ (1),(2),(5) => Góc HIB = góc FIC

Mà góc BIH + góc HIC = 1800 ( vì IB và IC là 2 tia đối )

=> Góc FIC + góc HIC = 1800nn=> IH và IF là 2 tia đối

=> H,I,F thẳng hàng

các bạn giải cho mình câu 3 thôi câu 1 , 2 mình biết làm rồi ạ

16 tháng 8 2016

A B D C M

1. Ta có  AD // OM // BC ; OA = OB

=> OM là đường trung bình của hình thang ABCD => M là trung điểm CD => MC = MD

2. Vì OM là đường trung bình của hình thang ABCD nên : \(OM=\frac{AD+BC}{2}\Rightarrow AD+BC=2OM\)không đổi. 

3. Dễ thấy M là tâm của đường tròn đường kính CD vì MC = MD

Lại có AD vuông góc với MD => đpcm

4. Ta có : \(S_{ABCD}=\frac{1}{2}.\left(AD+BC\right).CD=OM.CD\)

Vì OM không đổi nên S.ABCD lớn nhất <=> CD lớn nhất <=> CD = AB

Vậy max (S.ABCD) = OM . AB = R.(2R) = 2R2 với R = AB/2

11 tháng 2 2017

ok

1) Cho đường tròn (O) đường kính AB = 2R. Lấy điểm C di động trên đường tròn (O), gọi I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc AB tại H. a) Vẽ CM song song BI ( M thuôc đường thẳng AI). Trên đoạn thẳng AB lấy điểm F sao cho AC = AF. Tính số đo góc CMF.b) Gọi K là tâm đường tròn nội tiếp tam giác CHA, CK cắt AB tại E. Tính giá trị lớn nhất của diện tích tam giác CEF theo R khi...
Đọc tiếp

1) Cho đường tròn (O) đường kính AB = 2R. Lấy điểm C di động trên đường tròn (O), gọi I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc AB tại H. 

a) Vẽ CM song song BI ( M thuôc đường thẳng AI). Trên đoạn thẳng AB lấy điểm F sao cho AC = AF. Tính số đo góc CMF.

b) Gọi K là tâm đường tròn nội tiếp tam giác CHA, CK cắt AB tại E. Tính giá trị lớn nhất của diện tích tam giác CEF theo R khi C di động trên (O). 

c) Chứng minh ba đường thẳng MH, CF và BI đồng qui tại một điểm.

2) Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O;R). Gọi M là điểm di động trên cung nhỏ BC. Vẽ AD vuông góc với MB tại D, AE vuông góc với MC tại E. Gọi H là giao điểm của DE và BC. 

a) Chứng minh A, H,E cùng thuộc một đường tròn. Từ đó suy ra DE luôn đi qua một điểm cố định. 

b) Xác định vị trí của M để MB/AD×MC/AE đạt giá trị lớn nhất.

Mọi người giúp em với ạ.

0