Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có :
OD//HB,OE//HC,DE//BC.
ODE^=HBC^ và OED^=HCB^ (hai góc nhọn có các cạnh tương ứng vuông góc ).
ODE^∼HBC^(c.g.c)
b) Vì G là trọng tâm của tam giác ABC, nên GDGB=12
Mặt khác DOBH=DEBC=12 , do đó DGBG=DOBH=12, lại có ODG^=GBH^ ( hai góc so le trong ).
Vậy △ODG∼△HBG(c.g.c)
c) △ODG∼△HBG ( theo câu b ) , nên OGD^=BGH^, BGH^+HGD^=1800 ,nên OGD^+DGH^=1800, suy ra ba điểm O, G, H thẳng hàng,đồng thời có:
OGGH=ODBH=12 , do đó GH=2OG.
Chú ý:Đường thẳng đi qua ba điểm H, G, O nói trên gọi là đường thẳng Ơle.
A B C H M O E I G K
a/
O là giao 3 đường trung trực nên O là tâm đường tròn ngoại tiếp tg ABC
Nối AO cắt đường trong (O) tại E ta có
\(\widehat{ABE}=90^o\) (Góc nội tiếp chắn nửa đường tròn)
\(\Rightarrow BE\perp AB\)
H là trực tâm tg ABC \(\Rightarrow CH\perp AB\)
=> BE//CH (1)
Ta có
\(\widehat{ACE}=90^o\) (Góc nội tiếp chắn nửa đường tròn)
\(\Rightarrow CE\perp AC\)
H là trực tâm tg ABC \(\Rightarrow BH\perp AC\)
=> CE//BH (2)
Từ (1) và (2) => BHCE là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
Do trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường mà G là trọng tâm tg ABC => M là trung điểm BC => M cũng là trung điểm của HE => MH = ME
Xét tg AHE có
MH=ME (cmt)
OA=OE
=> OM là đường trung bình của tg AHE \(\Rightarrow OM=\dfrac{1}{2}AH\)
b/
Ta có M là trung điểm của BC (cmt) => OM là đường trung trực của BC \(OM\perp BC\)
\(AH\perp BC\)
=> OM//AH
Xét tg AGH có
IA=IG (gt)
KH=KG (gt)
=> IK là đường trung bình của tg AGK => IK//AH mà OM//AH (cmt)
=> IK//OM \(\Rightarrow\widehat{GIK}=\widehat{GMO}\) (góc so le trong) (4)
IK là đường trung bình của tg AGH \(\Rightarrow IK=\dfrac{1}{2}AH\) mà \(OM=\dfrac{1}{2}AH\) (cmt) => IK = OM (5)
G là trong tâm tg ABC => \(GM=\dfrac{1}{2}AG\) mà \(IG=\dfrac{1}{2}AG\)
=> IG=GM (6)
Từ (4) (5) (5) => tg IGK = tg MGO (c.g.c)
c/
Nối H với O cắt AM tại G' Xét tg AHE
MH=ME (cmt) => AM là trung tuyến của tg AHE
OA=OE => HO là trung tuyến của tg AHE
=> G' là trọng tâm của tg AHE \(\Rightarrow G'M=\dfrac{1}{3}AM\)
Mà G là trọng tâm của tg ABC \(\Rightarrow GM=\dfrac{1}{3}AM\)
\(\Rightarrow G'\equiv G\) => H; G; O thẳng hàng
d/
Do G là trọng tâm của tg AHE => GH=2GO
) Gọi M là trung điểm BC. Lấy điểm D sao cho O là trung điểm CD
Xét Δ BCD có M là trung điểm BC, O là trung điểm CD OM là đường trung bình của Δ BCD
OM=12DB và OM // DB
mà OM⊥BC ( OM là đường trung trực của BC ) DB⊥BC
mà AH⊥BC( AH là đường cao của ΔABC ) AH // DB
Xét ΔABH và ΔBAD có
HABˆ=DBAˆ( 2 góc so le trong do AH // DB )
AB chung
ABHˆ=BADˆ( 2 góc so le trong do AH // DB )
ΔABH=ΔBAD( g-c-g )
AH = BD mà OM=12DB OM=12AH
AH = 2 OM ( đpcm )
b) Gọi G' là giao điển của AM và OH, P là trung điểm G'H, Q là trung điểm G'A
Xét Δ AG'H có P là trung điểm G'H, Q là trung điểm G'A PQ là đường trung bình của \large\Delta AG'H
PQ=12AH và PQ // AH
Do PQ=12AH mà OM=12AH PQ = OM
Do AH // OM ( cùng ⊥BC ) mà PQ // AH PQ // OM
Xét ΔPQG′ và ΔOMG′ có
PQG′ˆ=OMG′ˆ( 2 góc so le trong do PQ // OM)
PQ = OM (c/m trên )
QPG′ˆ=MOG′ˆ ( 2 góc so le trong do PQ //OM )
ΔPQG′=ΔOMG′( g-c-g )
G'Q = G'M và G'P = G'O
Ta có G'Q = G'M mà G′Q=12G′A( Q là trung điểm G'A ) G′M=12G′Amà G'M + G'A = AM
G′A=23AM mà AM là trung tuyến của ΔABC
G' là trọng tâm của ΔABC ,mà G là trọng tâm của ΔABC G′≡ G
mà G′∈OH G∈OH O, H, G thẳng hàng ( đpcm )
Hên xui nghe bạn ^ ^
Trọng tâm : điểm giao nhau của 3 đường trung tuyến trong Tam giác
Trực tâm : giao giữa ba đường cao
Đường trung trực : là đường vuông góc với 1 đoạn thẳng tại trung điểm của đoạn thẳng đó.
chắc giờ trả lời là trễ lắm rồi, 2021 cơ mà. Nhưng lỡ thì kệ đi.
bn vẽ hình giùm mk đi, hoặc giải thích thế nào là trực tâm, trọng tâm z?
a) Trên tia đối của tia OC lấy điểm N sao cho ON = OC,ta có : \(OM//BN\)và \(OM=\frac{1}{2}BN\)
Vì OM \(\perp\)BC,AH \(\perp\)BC,do đó OM //AH => NB // AH
Cmtt NA/BH
Xét \(\Delta\)ANB và \(\Delta\)BHA có :
AN = AH(gt)
\(\widehat{A_1}=\widehat{A_2}\)(gt)
\(\widehat{B_1}=\widehat{B_2}\)(gt)
=> \(\Delta ANB=\Delta BHA\left(g.c.g\right)\)
=> NB = AH(hai cạnh tương ứng)
Mà \(OM=\frac{1}{2}NB\)
=> AH = 2OM
b) Gọi I là trung điểm của AG,K là trung điểm của HG thì IK//AH => IK//OM,do đó \(\widehat{KIG}=\widehat{OMG}\)(so le trong)
Xét \(\Delta KGI\)và \(\Delta OMG\)có :
GI = GM(gt)
\(\widehat{G_1}=\widehat{G_2}\)(đối đỉnh)
\(\widehat{I}=\widehat{M}\)
=> \(\Delta KGI=\Delta OGM\left(g.c.g\right)\)
=> KG = GO
Từ đó ta có : HG = GO.
) Gọi M là trung điểm BC. Lấy điểm D sao cho O là trung điểm CD
Xét Δ BCD có M là trung điểm BC, O là trung điểm CD OM là đường trung bình của Δ BCD
OM=12DB và OM // DB
mà OM⊥BC ( OM là đường trung trực của BC ) DB⊥BC
mà AH⊥BC( AH là đường cao của ΔABC ) AH // DB
Xét ΔABH và ΔBAD có
HABˆ=DBAˆ( 2 góc so le trong do AH // DB )
AB chung
ABHˆ=BADˆ( 2 góc so le trong do AH // DB )
ΔABH=ΔBAD( g-c-g )
AH = BD mà OM=12DB OM=12AH
AH = 2 OM ( đpcm )
b) Gọi G' là giao điển của AM và OH, P là trung điểm G'H, Q là trung điểm G'A
Xét Δ AG'H có P là trung điểm G'H, Q là trung điểm G'A PQ là đường trung bình của \large\Delta AG'H
PQ=12AH và PQ // AH
Do PQ=12AH mà OM=12AH PQ = OM
Do AH // OM ( cùng ⊥BC ) mà PQ // AH PQ // OM
Xét ΔPQG′ và ΔOMG′ có
PQG′ˆ=OMG′ˆ( 2 góc so le trong do PQ // OM)
PQ = OM (c/m trên )
QPG′ˆ=MOG′ˆ ( 2 góc so le trong do PQ //OM )
ΔPQG′=ΔOMG′( g-c-g )
G'Q = G'M và G'P = G'O
Ta có G'Q = G'M mà G′Q=12G′A( Q là trung điểm G'A ) G′M=12G′Amà G'M + G'A = AM
G′A=23AM mà AM là trung tuyến của ΔABC
G' là trọng tâm của ΔABC ,mà G là trọng tâm của ΔABC G′≡ G
mà G′∈OH G∈OH O, H, G thẳng hàng ( đpcm )
Hên xui nghe bạn ^ ^
Quyết Kiếm Sĩ:hên sui cái j copy trên mạng mà nổ wa :D