K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét tứ giác BHCD có

BH//CD

BD//CH

Do đó:BHCD là hình bình hành

Suy ra: BHCD là hình thang có hai đáy bằg nhau

2: BHCD là hình bình hành

nên BH=CD; BD=CH

BH+CH>BC

nên BH+BD>BC

BH+BD>HD

nên BH+CH>HD

28 tháng 6 2018

giúp tui với

a: Xét tứ giác BHCD có 

BH//CD

CH//BD

Do đó:BHCD là hình bình hành

b: Ta có: BHCD là hình bình hành

nên Hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của HD

hay H,M,D thẳng hàng

a: Xét tứ giác BHCD có

BH//CD

CH//BD

DO đó: BHCD là hình bình hành

Câu b và c sai đề rồi bạn

a: Xét tứ giác BHCD có

BH//CD

CH//BD

DO đó: BHCD là hình bình hành

Câu b và c sai đề rồi bạn

31 tháng 10 2016

1)
H là trực tâm của tam giác ABC => BH vuông góc với AC
Mà DC lạ vuông góc với AC(gt)
=> BH song song DC (1)
H là trực tâm của tam giác ABC => CH vuông góc với AB
Mà DB lạ vuông góc với AB(gt)
=> CH song song DB (2)
Từ (1) và (2) => Tứ giác BHCD có CH song song với DB; BH song song với CD
=> BHCD là hình bình hành.

2) BHCD là hình bình hành nên đường chéo cắt nhau tại trung điểm mỗi đường
=> M cũng là trung điểm của HD
mà O là trung điểm của AD
=> OM là đường trung bình tam giác ADH
=> OM = 1/2AH (dpcm)
3) và OM//AH
mà AH vuông góc BC
=> OM vuông góc với BC
gọi I là giao điểm của AM và OH
do AH//OM (cùng vuông góc BC)
=> tam giác IAH đồng dạng IMO
=> IA/IM = AH/OM = 2OM/OM = 2
=> điểm I thuộc trung tuyến AM và cách A một khoảng như trọng tâm G
=> I trùng G
vậy H,G,O thẳng hàng