K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
a) ta có M, E lần lượt là trung điểm AB, AC => ME là đường trung bình của tam giác ABC => ME // BC (tính chất đường trung bình trong tam giác)
b) ME là đường trung bình của tam giác ABC (chminh câu a) => ME // BC và ME = 1/2 BC = PC (do P là trung điểm BC nên BP = PC = BC / 2)
tứ giác MECP có 2 cạnh đối diện ME song song và bằng cạnh CP => MECP là hình bình hành.
c) kéo dài AO (hay AI) cắt BC tại N
trong tam giác ANC ta có OE // NC (ME // BC)
và E là trung điểm AC (giả thuyết)
=> OE là đường trung bình tam giác ANC (định lí đường trung bình trong tam giác)
=> O là trung điểm của AN => AO = ON (1)
I là giao điểm 2 đường chéo MC và EP của hình bình hành MECP => EI = IP => tam giác OEI = tam giác NPI (g-c-g) => OI = NI (cạnh tương ứng) mà 3 điểm ONI thẳng hàng => I là trung điểm ON => ON = 2.OI (2)
Thế (2) vào (1) ta được AO = 2.OI (đpcm)
~chúc e học tốt!~