K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2019

A B H D K C

a, \(BH\le BD\)đường vuông góc ngắn hơn mọi đường xuyên

BH = BD khi và chỉ khi \(H\equiv D\), tức là \(AD\perp BC\)

b, Ta có : \(BH\le BD\)và \(CK< CD\)nên \(BH+CK\le BD+CD=BC\)

Xảy ra \(BH+CK=BC\)khi và chỉ khi \(AD\perp BC\).

a: ΔBHD vuông tại H

=>BH<BD

BH=BD khi H trùng với D

=>AD vuông góc BC

b: ΔCKD vuông tại K

=>CK<CD

mà BH<BD

nên BH+CK<BC

a: Vì ΔBHD vuông tại H nên BH<BD

Để BH=BD thì H trùng với D

b: BD<BC/2

=>BD<CD

=>HC>BK

26 tháng 4 2016

Bạn tự vẽ hình nhé. Mình giải thôi. 

Ta xét tam giác BDH có BD là cạnh đối diện góc vuông => BD>BH (1)

Xét tam giác CDK có CD là cạnh đối diện góc vuông => CD>CK (2)

Cộng vế 1 với vế 2, ta được BH+CK<BD+CD

<=> BH+CK<BC

26 tháng 4 2016

+ Trong tg vuông BHD có BD>BH (trong tg vuông cạnh huyền là cạnh lớn nhất)

+ Trong tg vuông CKD có CD>CK )lý do như trên)

=> BD+CD=BC>BH+CK

19 tháng 2 2022

giải giúp mình với