K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2018

A B C M N H G D

Gọi giao điểm của hai trung tuyến BN và CM là : G ( sửa đề tí nhé ^-^)

Tia AG cắt BC tại D ( D ∈ BC )

Ta có : BD = DC \(\Rightarrow BC=2BD=2GD\) ( Do tam giác GDC vuông tại G )

Ta cũng có : AD = 3DG

Xét tam giác AHB vuông tại H có :

\(cotB=\dfrac{BH}{AH}\)

TT , \(cotC=\dfrac{HC}{AH}\)

\(\Rightarrow cotB+cotC=\dfrac{BC}{AH}=\dfrac{2GD}{AH}\ge\dfrac{2DG}{AD}=\dfrac{2DG}{3DG}=\dfrac{2}{3}\)


17 tháng 8 2018

Bài Làm: 

vẽ AH vuông góc với BC 

\(\Rightarrow\cot B=\frac{BH}{AH}\left(\Delta ABH;\widehat{H}=1v\right)\)

\(\Rightarrow\cot C=\frac{HC}{AH}\left(\Delta HCA;\widehat{H}=1v\right)\)

\(\Rightarrow\cot B+\cot C=\frac{BC}{AH}\left(1\right)\)

Gọi G là giao điểm 2 đường trung tuyến BM ; CN

Nếu AG cắt BC tại I thì AI - đường trung tuyến tam giác ABC

Suy ra BI = IC 

suy ra GI - đường trung tuyến tam giác GBC vuông tại G

\(\Rightarrow BC=2GI\left(2\right)\)

\(AH\le AI\le3GI\left(3\right)\)

\(\Rightarrow\cot B+\cot C=\frac{BC}{AH}\ge\frac{2AI}{3AI}=\frac{2}{3}\)

Vậy \(\cot B+\cot C\ge\frac{2}{3}\left(đpcm\right)\)

Dấu "=" xảy ra khi \(AH\equiv AI\)

\(\Rightarrow\Delta ABC\)cân tại A


A B C M N H I G \ \ // //

24 tháng 9 2015

có đâu, sáng con ko ăn, đói qá ms ăn, tối thì ko bao j, đói qá lấy sữa ống hoy ^^~~

13 tháng 8 2016

vẽ hình thử xem mk ko vẽ dc hình

8 tháng 7 2017

Cho hình vẽ

A G N B H D C M

Gọi G là trọng tâm của ABC 

Trước hết tìm cot B và cot C trong hình tam giác. Việc kẻ đường cao AH cho ta ngay kết quả; 

cot B + cot C \(=\frac{BH}{AH}+\frac{CH}{AH}=\frac{BC}{AH}\)

Lại nhận thấ \(AM\ge AH\)

Lưu ý; Do \(\frac{T}{C}\) là đường xiên lớn hơn đường vuông góc 

Hơn nữa dùng giả thiết \(BM\downarrow CN\) ta có \(GM=\frac{1}{2}BC\)

Như vậy \(BC=2GM=\frac{2AM}{3}\ge\frac{2AH}{3}v\Rightarrow cotB+cotC=\frac{BC}{AH}\ge\frac{2}{3}\)

8 tháng 7 2017

a/ BN và CN cắt nhau tại I => \(NI=\frac{BI}{2}\) và \(MI=\frac{CI}{2}\)

+ Ta có \(AC=2CN\Rightarrow AC^2=4CN^2\)và \(AB=2BM\Rightarrow AB^2=4BM^2\)

+ Xét tg vuông BIM có \(BM^2=BI^2+MI^2\Rightarrow4BM^2=AB^2=4\left(BI^2+MI^2\right)=4\left(BI^2+\frac{CI^2}{4}\right)\)

+ Xét tg vuông CIN có \(CN^2=CI^2+NI^2\Rightarrow4CN^2=AC^2=4\left(CI^2+NI^2\right)=4\left(CI^2+\frac{BI^2}{4}\right)\)

\(\Rightarrow AB^2+AC^2=4\left[\left(BI^2+CI^2\right)+\frac{BI^2+CI^2}{4}\right]\)

Mà trong tg vuông BIC có \(BC^2=BI^2+CI^2\)

\(\Rightarrow AB^2+AC^2=4\left(BC^2+\frac{BC^2}{4}\right)=5BC^2\)

b/