Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BHCK có
BH//CK
BK//CH
=>BHCK là hình bình hành
=>H,M,K thẳng hàng
b: BHCK là hình thoi khi BH=HC
=>AB=AC
Kẻ CG//MN(G thuộc AB), CG cắt AD tại K
=>HI vuông góc CK
=>I là trựctâm của ΔHCK
=>KI vuông góc CH
=>KI//AB
=>KI//BG
=>K là trung điểm của CG
MN//GC
=>MH/GK=HN/KC
mà GK=KC
nên MH=HN
a: Xet ΔADB vuông tại D va ΔAEC vuông tại E có
góc BAD chung
=>ΔADB đồg dạng với ΔAEC
=>AD/AE=AB/AC
=>AD/AB=AE/AC và AD*AC=AE*AB
=>ΔADE đồng dạng với ΔABC
=>góc ADE=góc ABC
a/
Ta có BG vuông góc AB; CH vuông góc AB => BG//CH
Ta có BH vuông góc AC; CG vuông góc AC => BH//CG
=> BHCG là hình bình hành (Tứ giác có các cặp cạnh dối // với nhau từng đôi một)
M là giao 2 đường chéo của hình bình hành BHCG => M là trung điểm của BC (trong hình bình hành hai đường chéo cắt nhau tại trung điểm mỗi đường)
b/ Ta có H trực tâm của tg ABC => AH vuông góc BC; AB vuông góc CE => ^PAH = ^HCM (góc có cạnh tương ứng vuông góc) (1)
Ta có PQ vuông góc HG (đề bài) và AB vuông góc CE (đề bài) => ^APH = ^CHM (góc có cạnh tương ứng vuông góc) (2)
Từ (1) và (2) => tg CMH đồng dạng với tg AHP
c/