K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2016

Cho t/giác ABC , kẻ AH vuông BC . Ở phía ngoài t/giác ABC vẽ các tam giác vuông cân tại A là t/giác ABD và t/giác ACE . Kẻ DM , EN vuông với AH . Chứng minh DM = EN

12 tháng 11 2021

a) Xét tam giác ABC và ADE vuông tại A

+) AB=AD

+) AC=AE

=> tam giác ABC bằng tam giác ADE

=> BC= DE

b)

TA có tam giác ABD và ACE đều vuông cân tại A

=> góc ABD = ADB= ACE=AEC = 45

=> BD//CE (có 2 góc so le trong bằng nhau)

c) Gọi đường NA cắt MC tại I

Xét tam giác NMC có 2 đường cao MH và NI cắt nhau tại A

=> A là trực tâm tam giác NMC

=> CA là đường cao thứ ba

=> CA ⊥ MN

d)

Ta chứng minh được tam giác ADM và AME cân tại M

Suy ra MD=MA và MA=ME
=> MD=ME=MA

=> MA=DE/2

 

 

 

image 
12 tháng 11 2021

Cậu ơi nhầm đề bài rùi:))

28 tháng 10 2023

A B C D E H I N M

a/

Ta có

\(DN\perp HA\left(gt\right);BC\perp HA\left(gt\right)\) => DN//BC

\(\Rightarrow\widehat{NDB}+\widehat{CBD}=180^o\) (Hai góc trong cùng phía bù nhau)

\(\Rightarrow\widehat{NDA}+\widehat{ADB}+\widehat{ABD}+\widehat{ABC}=180^o\)

Ta có

tg ABD vuông cân tại A \(\Rightarrow\widehat{ADB}=\widehat{ABD}=45^o\Rightarrow\widehat{ADB}+\widehat{ABD}=90^o\)

\(\Rightarrow\widehat{NDA}+\widehat{ABC}=180^o-90^o=90^o\)

Xét tg vuông ABH

\(\widehat{BAH}+\widehat{ABC}=90^o\)

\(\Rightarrow\widehat{NDA}=\widehat{BAH}\)

Xét tg vuông NDA và tg vuông BAH có

\(\widehat{NDA}=\widehat{BAH}\left(cmt\right)\)

AD=AB (cạnh bên tg cân)

=> tg NDA = tg BAH (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)

=> DN = AH

C/m tương tự ta cũng có tg vuông MAE = tg vuông CHA => EM=AH

b/

Ta có

\(DN\perp HA\left(gt\right);EM\perp HA\left(gt\right)\) => DN//EM

Xét tg vuông DIN và tg vuông EIM có

DN=EM (cùng bằng AH)

\(\widehat{IDN}=\widehat{IEM}\) (góc so le trong)

=> tg DIN = tg EIM (Hai tg vuông có 1 cạnh góc vuông và góc nhọn tương ứng bằng nhau)

=> DI=IE

 

 

 

 

9 tháng 4 2016

D B C E N M A H

                                          a,   có góc ADM+DAM=90độ

                                             có góc DAM+DAB+BAH=90độ

                                             =>DAM+BAH=90 độ=>BAH=ADM

có DAM+ADM=90 độ

có BAH+ABH=90 độ

mà ADM=BAH=>ABH=DAM

xét tg DAM và tg BAH

     AB=AD

góc ADM=BAH     => tg DAM=tg ABH(g.c.g)

góc DAM=ABH

=> DM=AH(2 cạnh t/ứ)

b, nối D,E 

 xét tg NEA và tg AHC giống ý a, rùi có NE=AH mà DM=AH => DM=NE

gọi giao điểm của DE và NA là T => NTE=DTM(đối đỉnh)

Xét tg MDT và tg NET

NE=DM

NET=TDM(2 góc kia = nhau thì góc này =)                        => tgMTD=tgNET(g.c.g)

ENT=DMT(=90 độ)

=> DT=ET(2 cạnh t.ứ)=> MN đi qua trung điểm của DE

c, có EAC=DAB(=90độ)=> EAC+BAC=DAB+BAC(1)

DA=BA(2),     CA=EA(3)

từ 1,2 3 => 2 tg đó = nhau

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:a) ∆ABE = ∆ADC b) Góc BMC = 120oBài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).a) Chứng minh: EM + HC = NH.b) Chứng minh: EN // FM.Bài 3:Cho...
Đọc tiếp

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:

a) ∆ABE = ∆ADC b) Góc BMC = 120o

Bài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).

a) Chứng minh: EM + HC = NH.

b) Chứng minh: EN // FM.

Bài 3:Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi DAPQ bằng 2.

Chứng minh rằng : Góc PCQ = 45o

Bài 4:Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.

a) Chứng minh rằng: BE = CD; AD = AE.

b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.

c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.

Bài 5: Cho tam giác cân ABC (AB = AC ). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:

a) DM = EN

b) Đường thẳng BC cắt MN tại trung điểm I của MN.

c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

0