K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: D và H đối xứng nhau qua AB(gt)

nên AB là đường trung trực của DH

hay AH=AD(1)

Ta có: H và E đối xứng nhau qua AC(gt)

nên AC là đường trung trực của EH

hay AE=AH(2)

Từ (1) và (2) suy ra AD=AE

hay ΔDAE cân tại A

 

Cho tam giác ABC vuông tại A có AB = 4cm, AC = 3cm. Hạ AH vuông góc với BC tại H. Lấy N đối xứng H qua AC, M đối xứng H qua AB. Giao điểm của NH và AC là F, giao điểm của AB với MH là E.1)   C/m: Tứ giác AFHE là hình chữ nhật, tứ giác AEFN là hình bình hành2)   Chứng minh: M đối xứng với N qua A.3)   Tính EF.4)   ΔABC cần thêm điều kiện gì để AEHF là hình vuông5)   Lấy I, K theo thứ tự là trung điểm của BH, CH. Chứng minh:...
Đọc tiếp

Cho tam giác ABC vuông tại A có AB = 4cm, AC = 3cm. Hạ AH vuông góc với BC tại H. Lấy N đối xứng H qua AC, M đối xứng H qua AB. Giao điểm của NH và AC là F, giao điểm của AB với MH là E.

1)   C/m: Tứ giác AFHE là hình chữ nhật, tứ giác AEFN là hình bình hành

2)   Chứng minh: M đối xứng với N qua A.

3)   Tính EF.

4)   ΔABC cần thêm điều kiện gì để AEHF là hình vuông

5)   Lấy I, K theo thứ tự là trung điểm của BH, CH. Chứng minh: EIKF là hình thang vuông.

6)   Tính diện tích EIKF.

7)   Chứng minh: EF vuông góc MB

Cho tam giác ABC vuông tại A có AB = 4cm, AC = 3cm. Hạ AH vuông góc với BC tại H. Lấy N đối xứng H qua AC, M đối xứng H qua AB. Giao điểm của NH và AC là F, giao điểm của AB với MH là E.

1)   C/m: Tứ giác AFHE là hình chữ nhật, tứ giác AEFN là hình bình hành

2)   Chứng minh: M đối xứng với N qua A.

3)   Tính EF.

4)   ΔABC cần thêm điều kiện gì để AEHF là hình vuông

5)   Lấy I, K theo thứ tự là trung điểm của BH, CH. Chứng minh: EIKF là hình thang vuông.

6)   Tính diện tích EIKF.

7)   Chứng minh: EF vuông góc MB

2
16 tháng 12 2021

1: Xét tứ giác AFHE có

\(\widehat{AFH}=\widehat{AEH}=\widehat{FAE}=90^0\)

Do đó: AFHE là hình chữ nhật

a: Ta có: H và M đối xứng nhau qua AB

nên BA là đường trung trực của HM

Suy ra: AM=AH(1)

ta có: H và N đối xứng nhau qua AC

nên AC là đường trung trực của HN

Suy ra: AH=AN(2)

Từ (1) và (2) suy ra AM=AN=AH

29 tháng 11 2023

a) Để chứng minh tam giác ABC vuông, ta cần chứng minh rằng tổng bình phương hai cạnh góc nhọn bằng bình phương cạnh huyền.

 

Áp dụng định lý Pythagoras, ta có:

AB^2 + AC^2 = 6^2 + 8^2 = 36 + 64 = 100

BC^2 = 10^2 = 100

 

Vậy AB^2 + AC^2 = BC^2, từ đó ta có thể kết luận rằng tam giác ABC là tam giác vuông tại góc A.

 

b) Ta có:

- H là chân đường cao từ A xuống BC, nên AH là đường cao của tam giác ABC.

- D là điểm đối xứng với H qua AB, nên AD = AH.

- M là giao điểm của AB và HD, nên AM là trung tuyến của tam giác AHD, do đó AM = MD.

- E là điểm đối xứng với H qua AC, nên AE = AH.

- N là giao điểm của AC và HE, nên AN là trung tuyến của tam giác AHE, do đó AN = NE.

 

Từ đó, ta có AH = AD = AE và AM = MD, AN = NE.

 

Vậy ta có thể kết luận rằng AH = MN.

 

c) Để chứng minh D đối xứng với E qua A, ta cần chứng minh rằng AD = AE và góc DAE = 180 độ.

 

Ta đã chứng minh trong phần b) rằng AD = AE.

 

Để chứng minh góc DAE = 180 độ, ta cần chứng minh rằng góc DAB + góc BAE = 180 độ.

 

Vì tam giác ABC là tam giác vuông tại A (chứng minh trong phần a)), nên góc DAB + góc BAE = 90 độ + 90 độ = 180 độ.

 

Từ đó, ta có thể kết luận rằng D đối xứng với E qua A.

 

Đồng thời, F là trung điểm BC, nên AF song song với HD (do D là điểm đối xứng với H qua AB) và AF song song với HE (do E là điểm đối xứng với H qua AC).

 

Vậy ta có thể kết luận rằng AF vuông góc với MN.