K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nen \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

hay AM/AC=AN/AB

Xét ΔAMN và ΔACB có

AM/AC=AN/AB

góc MAN chung

Do đó: ΔAMN đồng dạng với ΔACB

b: \(\dfrac{BC}{cotB+cotC}=BC:\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)

\(=BC:\dfrac{BC}{AH}=AH\)

22 tháng 7 2017

giúp mình làm câu C với

24 tháng 10 2018

a, vì \(BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+9^2}=15\)
=> ABC là tam giác vuông (theo định lí Pytago)
b, sin B = 0,6 ; sin C = 0,8 (sin = đối/huyền)
=> \(\dfrac{sinB+sinC}{sinB-sinC}=\dfrac{0,6+0,8}{0,6-0,8}=-7\)
c, AH.BC = AC.AB
=>\(AH=\dfrac{AC.AB}{BC}=\dfrac{9.12}{15}=7,2\)

28 tháng 10 2022

d: Sửa đề: AN*AB=AM*AC
AN*AB=AH^2

AM*AC=AH^2

Do đó: AN*AB=AM*AC

e: \(\dfrac{BC}{cotB+cotC}=BC:\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)

\(=BC\cdot\dfrac{AH}{BC}=AH\)