Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có BFC = 90* ( góc nội tiếp chắn nửa đường tròn )
=> AB vuông góc CF
BEC = 90* ( góc nội tiếp chắn nửa đường tròn )
=> AC vuông góc BE
Tam giác ABC có BE, CF là đường cao ( AB vuông góc CF tại F và AC vuông góc BE tại E )
Mà BE và CF cắt nhau tại H
Suy ra H là trực tâm tam giác ABC
=> AH vuông góc BC tại D
AH . AD = AE . AC
Xét tam giác AHE và ADC
AEH = ADC = 90*
góc A : góc chung
Vậy tam giác AEH đồng dạng tam giác ADC
=> \(\frac{AE}{AD}\)=\(\frac{AH}{AC}\)
=> AE . AC = AD . AH
b) Gợi ý nhé bạn
Ta chứng minh tứ giác BFHD nội tiếp
=> DFH = HBD
Mà HBD = CFE ( cùng chắn CE )
Nên DFH = CFE
=> FC là phân giác góc EFD
=> DFE = 2 CFE
Mà EOC = 2 CFE ( góc ở tâm và góc nội tiếp cùng chắn cung CE )
Suy ra DFE = EOC
=> Tứ giác EODF nội tiếp ( góc trong = góc đối ngoài )
c) Tứ giác EODF nội tiếp
=> EDF = EOF
Mà EOF = 2 ECF ( góc ở tâm và góc nội tiếp cùng chắn EF )
Nên EDF = 2 ECF
Tam giác DFL cân tại D
=> EDF = 2 FLD = 2 FLE
Mà EDF = 2 ECF (cmt)
Nên FLE = ECF
=> Tứ giác EFCL nội tiếp
Mà tam giác CEF nội tiếp (O)
=> L thuộc (O)
Tam giác BLC nội tiếp (O). Có BC là đường kính
Suy ra tg BLC vuông tại L
=> BLC = 90*
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).
Chào người đẹp
a) Dễ quá
b)Quá dễ
c) ko khó
DF = DL => DB là đường trung trực của FL
=> BD vuông góc và chia FL ra 2 đoạn bằng nhau
hay OB vừa đg cao vừa đường trung tuyến
=> tam giác FOL cân
=>OF= OL
=>BLC=90độ
chắn nữa đường tròn
d) dễ quá khỏi làm
d)Gọi Q là giao điểm của (O) và SC
Vì EF song song với BQ (do RSQ=BQC=90)
=>EQ=BF;BF=BL=>EQ=BF=BL
=>góc EBQ=BQL(cùng nhìn 2 cung bằng nhau)
Mà EQ=BL
=>tứ giác BEQL là hình thang cân
=>BQ=EL
mà tứ giác SQBR là hình chữ nhật =>RS=BQ
EL=DE+DL
=>...........
hsg có mấy chỗ tự hiểu
Cậu ơi cho t hỏi tí: câu (a) ấy cái chỗ c/m AD vuông góc vs BC trình bày kiểu gì cho nó logic được ???