Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BHCD có
BH//CD
CH//BD
DO đó: BHCD là hình bình hành
Câu b và c sai đề rồi bạn
a: Xét tứ giác BHCD có
BH//CD
CH//BD
DO đó: BHCD là hình bình hành
Câu b và c sai đề rồi bạn
1)
H là trực tâm của tam giác ABC => BH vuông góc với AC
Mà DC lạ vuông góc với AC(gt)
=> BH song song DC (1)
H là trực tâm của tam giác ABC => CH vuông góc với AB
Mà DB lạ vuông góc với AB(gt)
=> CH song song DB (2)
Từ (1) và (2) => Tứ giác BHCD có CH song song với DB; BH song song với CD
=> BHCD là hình bình hành.
2) BHCD là hình bình hành nên đường chéo cắt nhau tại trung điểm mỗi đường
=> M cũng là trung điểm của HD
mà O là trung điểm của AD
=> OM là đường trung bình tam giác ADH
=> OM = 1/2AH (dpcm)
3) và OM//AH
mà AH vuông góc BC
=> OM vuông góc với BC
gọi I là giao điểm của AM và OH
do AH//OM (cùng vuông góc BC)
=> tam giác IAH đồng dạng IMO
=> IA/IM = AH/OM = 2OM/OM = 2
=> điểm I thuộc trung tuyến AM và cách A một khoảng như trọng tâm G
=> I trùng G
vậy H,G,O thẳng hàng
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
a) Để chứng minh tứ giác ABDC là hình chữ nhật, ta cần chứng minh AB || CD và AB = CD.
Vì Bx vuông góc với AB, nên AB || Bx.
Vì Cy vuông góc với AC, nên AC || Cy.
Do đó, AB || CD.
Ta có:
- Góc ABC = 90 độ (vì tam giác ABC vuông tại A).
- Góc BAC = 90 độ (vì Bx vuông góc với AB).
- Góc ACB = 90 độ (vì Cy vuông góc với AC).
Vậy tứ giác ABDC có 4 góc vuông, tức là là hình chữ nhật.
b) Gọi M là điểm đối xứng của B qua A và N là điểm đối xứng của C qua A. Ta cần chứng minh tứ giác BCMN là hình thoi và AD = MC.
Vì M là điểm đối xứng của B qua A, nên AM = MB và góc AMB = góc BMA = 90 độ.
Vì N là điểm đối xứng của C qua A, nên AN = NC và góc ANC = góc CNA = 90 độ.
Do đó, ta có:
- AM = MB = MC (vì M là trung điểm của BC).
- AN = NC = NB (vì N là trung điểm của BC).
- Góc BMC = góc BMA + góc AMC = 90 độ + 90 độ = 180 độ (tổng các góc trong tứ giác là 360 độ).
Vậy tứ giác BCMN là hình thoi và AD = MC.
c) Gọi E là trung điểm của AC và F là trung điểm của MN. Ta cần chứng minh EF || ND.
Vì E là trung điểm của AC, nên AE = EC.
Vì F là trung điểm của MN, nên AF = FN.
Do đó, ta có:
- AE = EC = AF = FN.
- Góc AEF = góc AFE = góc NDF = góc NFD = 90 độ (vì E và F lần lượt là trung điểm của AC và MN).
Vậy EF || ND.
a: Xét tứ giác BDCH có
BD//CH
BH//CD
Do đó: BDCH là hình bình hành
b: Ta có: BDCH là hình bình hành
nen BC cắt HD tại trung điểm của mỗi đường
=>M là trug điểm của HD
hay H,D đối xứng nhau qua M