Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)-Gọi chân đường thẳng vuông góc kẻ từ trung điểm D tới phân gác góc BAC là G
=>AG vuông góc với DG => AG vuông góc với EF
-Xét tam giác AFE có AG vừa là phân giác vừa là đường cao => tam giác AFE là tam giác cân và cân tại A(đpcm)
=>góc AFE = góc AEF
-BM //AC => AFE = BME (đồng vị) => BME = AEF => tam giác BME là tam giác cân và cân tại B(đpcm)
b) Xét tam giác CFD và tam giác MBD:
+) FDC = MDB (đối đỉnh)
+) CD=BD (D là trung điểm BC)
+) FCD = DBM ( so le trong - BM //AC)
=> tam giác CFD = tam giác MBD
=> CF = BM ( hai cạnh tương ứng)
- tam giác BME cân tại B (cmt) => BM=BE
=> CF=BE
c)-DO là đường trung trực của cạnh BC => BO=CO
-tam giác AFE cân tại A => AG vừa là đường cao vừa là đường trung trực từ đỉnh tới cạnh đáy FE. O nằm trên FE => FO=EO
-Xét tam giác OCF và tam giác OBE:
+) BO=CO (cmt)
+) FO=EO (cmt)
+) CF=BE (cmt)
=> tam giác OCF=tam giác OBE (đpcm)
Gọi H là giao điểm của CF vs AB, K là trung điểm AH => DK//GH => KH/BH = DG/BG (1)
Mặt khác dễ thấy tg BCH cân tại B => BH = CB và theo tính chất phân giác ta có:
AE/CE = AB/CB = (AH + BH)/BH = AH/BH + 1 <=> AH/BH = AE/CE - 1 = (AE - CE)/CE = ((AD + DE) - (CD - DE))/CE = 2DE/CE (vì AD = CD)
<=> 2KH/BH = 2DE/CE <=> KH/BH = DE/CE (2)
Từ (1) và (2) => DE/CE = DG/BG => EG//BC mà DF//AB (do D; F là trung điểm của AC;CH) => DF đi qua trung điểm của BC => DF đi qua trung điểm EG (Ta lét(
hình tự vẽ nhé
đường trung trục của BC là HT cắt tia phân giác AK của góc A ở I .
Xét tam giác HIB và tam giác HIC ta có:
HB = HC ( HT là đường trung trực của BC)
HI chung
góc IHC= góc IHB = 90 độ
=> tam giác HIB = tam giác HIC (c.g.c)
=> IC = IB ( 2 cạnh tương ứng)
Xét tam giác AIE và tam giác AID ta có:
góc A1 = góc A2 ( AK là tia phân giác góc A)
AI là cạnh chung
=> tam giác AIE = tam giác AID ( cạnh huyền góc nhọn )
=> IE=ID (2 cạnh tương ứng)
theo định lý Py-ta-go ta có:
xét tam giác vuông EIC: IC2 - IE2 = EC2
xét tam giác vuông DIB: IB2 - ID2 = BD2
mà IC=IB , ID=IE => EC2=BD2 => EC=BD
xét tam giác DBI và tam giác ECI ta có:
DB=EC (CM trên)
IE=ID (CM trên)
IB=IC (CM trên)
suy ra tam giác DBI= tam giác ECI (ĐPCM)
=> góc ACI=góc DIB (2 góc tương ứng)
mà tổng 2 góc ABI và góc DIB = 90 độ
=> góc ABI + góc ACI = 90 dộ
a) Xét tam giác ABC và tam giác ACD có:
AB=AC (gt)
^A1=^A2 (AD là tia phân giác của BC
AD chung
Suy ra: tam giác ABD =tam giác ACD(c.g.c)
VÌ tam giác ABD= tam giác ACD
Suy ra: BD=CD( hai cạnh tương ứng ) (1)
mà D1+D2( kề bù )
D1+D2=180 độ chia 2=90 độ
suy ra:AD vuông góc với BC(2)
Từ 1 và 2 suy ra:
AD là trung trực của BC
b) LẦN SAU
mình ko biết vẽ hình trên này bạn tự vẽ đi
ta có:
ME//AD suy ra \(\hept{\begin{cases}DAF=AFE\left(soletrong\right)\\DAC=AEF\left(dongvi\right)\end{cases}}\) mà \(DAC=DAF\) vì AD là phân giác góc A
\(\Rightarrow AEF=AFE\)
Do Az là phân giác CAxˆ→CAzˆ=xAzˆ(1)CAx^→CAz^=xAz^(1)
Do Az // BC →ABCˆ=xAzˆ→ABC^=xAz^ ( 2 góc đồng vị ) (2)
và ACBˆ=CAzˆACB^=CAz^ ( 2 góc so le trong ) (3)
Từ (1); (2) và (3) \Rightarrow ABCˆ=ACBˆABC^=ACB^ ( đpcm )