K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2017

A B C c H b a h

kẻ AH vuông góc với BC 

đặt AH = h . xét hai tam giác vuông AHB và AHC , ta có :

sin B = \(\frac{AH}{AB}\),   sin C = \(\frac{AH}{AC}\)

do đó \(\frac{sinB}{sinC}=\frac{AH}{AB}\cdot\frac{AC}{AH}=\frac{h}{c}\cdot\frac{b}{h}=\frac{b}{c}\)

suy ra \(\frac{b}{sinB}=\frac{c}{sinC}\)

tương tự   \(\frac{a}{sinA}=\frac{b}{sinB}\)

vậy suy ra dpcm

23 tháng 7 2017

cái đường thẳng cắt tam giác đó mk không bt nó thừ đâu tới, bạn bỏ cái đấy đi nhá

24 tháng 7 2018

1)

Kẻ phân giác AD,BK vuông góc với AD
sin A/2=sinBAD
xét tam giác AKB vuông tại K,có:
sinBAD=BK/AB (1)
xét tam giác BKD vuông tại K,có
BK<=BD thay vào (1):
sinBAD<=BD/AB(2)
lại có:BD/CD=AB/AC
=>BD/(BD+CD)=AB/(AB+AC)
=>BD/BC=AB/(AB+AC)
=>BD=(AB*BC)/(AB+AC) thay vào (2)
sinBAD<=[(AB*BC)/(AB+AC)]/AB
= BC/(AB + AC)
=>ĐPCM

4 tháng 8 2017

Bài 1:

Áp dụng định lí pytago trong tam giác vuông ABC ta có:

BC2=AC2+AB2

BC2=42+32

BC=\(\sqrt{25}\)=5(cm)

Ta có:

Sin B=\(\dfrac{AC}{BC}=\dfrac{4}{5}=0.8\)

Cos B=\(\dfrac{AB}{BC}=\dfrac{3}{5}=0.6\)

Tag B=\(\dfrac{AC}{AB}=\dfrac{4}{3}\)

Cotg B=\(\dfrac{AB}{AC}=\dfrac{3}{4}=0.75\)

22 tháng 9 2017

bài 2:

\(\sin\alpha^2+\cos\alpha^2=1\)

=>0,62+\(\cos\alpha^2=1\)

=>\(\cos\alpha=0,8\)

\(\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=>\tan\alpha=\dfrac{0,6}{0,8}=0,75\)

\(\cot\alpha=\dfrac{\cos\alpha}{\sin\alpha}=\dfrac{0,8}{0,6}\)\(\approx1,33\)

20 tháng 10 2018

A B C D H K a, Vẽ phân giác AD của góc BAC

Kẻ BH\(\perp\)AD tại H ; CK\(\perp AD\) tại K

Dễ thấy \(sin\widehat{A_1}=sin\widehat{A_2}=sin\dfrac{A}{2}=\dfrac{BH}{AB}=\dfrac{CK}{AC}=\dfrac{BH+CK}{AB+AC}\le\)\(\le\dfrac{BD+CD}{b+c}=\dfrac{a}{b+c}\)

b, Tượng tự \(sin\dfrac{B}{2}\le\dfrac{b}{a+c};sin\dfrac{C}{2}\le\dfrac{c}{a+b}\)

Mặt khác \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}=8abc\)

\(\Rightarrow sin\dfrac{A}{2}.sin\dfrac{B}{2}.sin\dfrac{C}{2}\le\dfrac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{1}{8}\)

AH
Akai Haruma
Giáo viên
11 tháng 8 2017

Lời giải:

Kẻ \(BE\perp AC(E\in AC)\)

Khi đó \(\sin A=\frac{BE}{c}\Rightarrow \frac{a}{\sin A}=\frac{ac}{BE}\)

Mặt khác, \(S_{ABC}=\frac{BE.b}{2}\Rightarrow BE=\frac{2S_{ABC}}{b}\)

\(\Rightarrow \frac{a}{\sin A}=\frac{abc}{2S_{ABC}}\). Hoàn toàn tương tự với \(\frac{b}{\sin B},\frac{c}{\sin C}\) ta có:

\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=\frac{abc}{2S_{ABC}}\) (đpcm)

11 tháng 8 2017

Gọi O là đường tròn ngoại tiếp tam giác ABC, D là trung điểm của BC, ta có:

\(OD\perp BC\)

\(OB=R;BD=\dfrac{1}{2}a\)

\(\widehat{BOD}=\widehat{A}\) (A là góc nội tiếp chắn cung BC, Ở là góc tâm chắn \(\dfrac{1}{2}\) cung BC)

Trong tam giác vuông DOB ta có:

\(sin\left(DOB\right)=\dfrac{BD}{OB}\)

\(\Rightarrow sinA=\dfrac{1}{2}\cdot\dfrac{a}{R}\Rightarrow\dfrac{a}{sinA}=2R\)

Chứng minh tương tự ta có:

\(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\)

AH
Akai Haruma
Giáo viên
16 tháng 7 2018

Lời giải:

Kẻ $AH$ vuông góc với $BC$. Khi đó:
\(S_{ABC}=\frac{AH.BC}{2}(1)\)

Mặt khác, theo công thức lượng giác:

\(\frac{AH}{AB}=\sin B\Rightarrow AH=\sin B.AB(2)\)

Từ \((1);(2)\Rightarrow S_{ABC}=\frac{\sin B.AB.BC}{2}=\frac{\sin B.ca}{2}\) (đpcm)

10 tháng 7 2016

  Đã xảy ra lỗi rồi. Bạn thông cảm vì sai sót này.

  Ta có:  

Áp dụng hệ quả của bất đẳng thức Cauchy cho ba số không âm 

   trong đó với     , ta có:

  

Tương tự, ta có:

       

Cộng ba bất đẳng thức     và   , ta được:

  

Khi đó, ta chỉ cần chứng minh

  

Thật vậy, bất đẳng thức cần chứng minh được quy về dạng sau:    (bất đẳng thức Cauchy cho ba số   )

Hay       

Mà    đã được chứng minh ở câu    nên    luôn đúng với mọi  

Dấu    xảy ra    

Vậy,