Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C c H b a h
kẻ AH vuông góc với BC
đặt AH = h . xét hai tam giác vuông AHB và AHC , ta có :
sin B = \(\frac{AH}{AB}\), sin C = \(\frac{AH}{AC}\)
do đó \(\frac{sinB}{sinC}=\frac{AH}{AB}\cdot\frac{AC}{AH}=\frac{h}{c}\cdot\frac{b}{h}=\frac{b}{c}\)
suy ra \(\frac{b}{sinB}=\frac{c}{sinC}\)
tương tự \(\frac{a}{sinA}=\frac{b}{sinB}\)
vậy suy ra dpcm
cái đường thẳng cắt tam giác đó mk không bt nó thừ đâu tới, bạn bỏ cái đấy đi nhá
1)
Kẻ phân giác AD,BK vuông góc với AD
sin A/2=sinBAD
xét tam giác AKB vuông tại K,có:
sinBAD=BK/AB (1)
xét tam giác BKD vuông tại K,có
BK<=BD thay vào (1):
sinBAD<=BD/AB(2)
lại có:BD/CD=AB/AC
=>BD/(BD+CD)=AB/(AB+AC)
=>BD/BC=AB/(AB+AC)
=>BD=(AB*BC)/(AB+AC) thay vào (2)
sinBAD<=[(AB*BC)/(AB+AC)]/AB
= BC/(AB + AC)
=>ĐPCM
Bài 1:
Áp dụng định lí pytago trong tam giác vuông ABC ta có:
BC2=AC2+AB2
BC2=42+32
BC=\(\sqrt{25}\)=5(cm)
Ta có:
Sin B=\(\dfrac{AC}{BC}=\dfrac{4}{5}=0.8\)
Cos B=\(\dfrac{AB}{BC}=\dfrac{3}{5}=0.6\)
Tag B=\(\dfrac{AC}{AB}=\dfrac{4}{3}\)
Cotg B=\(\dfrac{AB}{AC}=\dfrac{3}{4}=0.75\)
A B C D H K a, Vẽ phân giác AD của góc BAC
Kẻ BH\(\perp\)AD tại H ; CK\(\perp AD\) tại K
Dễ thấy \(sin\widehat{A_1}=sin\widehat{A_2}=sin\dfrac{A}{2}=\dfrac{BH}{AB}=\dfrac{CK}{AC}=\dfrac{BH+CK}{AB+AC}\le\)\(\le\dfrac{BD+CD}{b+c}=\dfrac{a}{b+c}\)
b, Tượng tự \(sin\dfrac{B}{2}\le\dfrac{b}{a+c};sin\dfrac{C}{2}\le\dfrac{c}{a+b}\)
Mặt khác \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}=8abc\)
\(\Rightarrow sin\dfrac{A}{2}.sin\dfrac{B}{2}.sin\dfrac{C}{2}\le\dfrac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{1}{8}\)
Lời giải:
Kẻ \(BE\perp AC(E\in AC)\)
Khi đó \(\sin A=\frac{BE}{c}\Rightarrow \frac{a}{\sin A}=\frac{ac}{BE}\)
Mặt khác, \(S_{ABC}=\frac{BE.b}{2}\Rightarrow BE=\frac{2S_{ABC}}{b}\)
\(\Rightarrow \frac{a}{\sin A}=\frac{abc}{2S_{ABC}}\). Hoàn toàn tương tự với \(\frac{b}{\sin B},\frac{c}{\sin C}\) ta có:
\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=\frac{abc}{2S_{ABC}}\) (đpcm)
Gọi O là đường tròn ngoại tiếp tam giác ABC, D là trung điểm của BC, ta có:
\(OD\perp BC\)
\(OB=R;BD=\dfrac{1}{2}a\)
\(\widehat{BOD}=\widehat{A}\) (A là góc nội tiếp chắn cung BC, Ở là góc tâm chắn \(\dfrac{1}{2}\) cung BC)
Trong tam giác vuông DOB ta có:
\(sin\left(DOB\right)=\dfrac{BD}{OB}\)
\(\Rightarrow sinA=\dfrac{1}{2}\cdot\dfrac{a}{R}\Rightarrow\dfrac{a}{sinA}=2R\)
Chứng minh tương tự ta có:
\(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\)
Lời giải:
Kẻ $AH$ vuông góc với $BC$. Khi đó:
\(S_{ABC}=\frac{AH.BC}{2}(1)\)
Mặt khác, theo công thức lượng giác:
\(\frac{AH}{AB}=\sin B\Rightarrow AH=\sin B.AB(2)\)
Từ \((1);(2)\Rightarrow S_{ABC}=\frac{\sin B.AB.BC}{2}=\frac{\sin B.ca}{2}\) (đpcm)
Đã xảy ra lỗi rồi. Bạn thông cảm vì sai sót này.
Ta có:
Áp dụng hệ quả của bất đẳng thức Cauchy cho ba số không âm
trong đó với , ta có:
Tương tự, ta có:
Cộng ba bất đẳng thức và , ta được:
Khi đó, ta chỉ cần chứng minh
Thật vậy, bất đẳng thức cần chứng minh được quy về dạng sau: (bất đẳng thức Cauchy cho ba số )
Hay
Mà đã được chứng minh ở câu nên luôn đúng với mọi
Dấu xảy ra
Vậy,