\(\in\)BC).K 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đây bạn ơi mik chỉ làm đc đến phần cm tia phân giác của câu c thoi

15 tháng 2 2020

Ko cần vẽ hình

15 tháng 2 2020

a, xét tam giác ACH và tam giác KCH có : CH chung

góc AHC = góc KHC = 90 

AH = HK do H là trđ của AK (gt)

=> tam giác ACH = tam giác KCH (2cgv)

b, xét tam giác  AEC và tam giác DEB có : góc BED = góc CEA (đối đỉnh)

BE= EC do E là trđ của BC (GT)

AE = ED do E là trđ của AD (gt)

=> tam giác AEC = tam giác DEB (c-g-c)

=> BD = AC (đn)

 tam giác ACH = tam giác KCH (câu a) => AC = CK (đn)

=> BD = CK (tcbc)

c, xét tam giác AEH và tam giác KEH có: EH chung

AH = HK (câu a)

góc AHE = góc KHE = 90

=> tam giác AEH = tam giác KEH (2cgv)

=> góc AEH = góc KEH mà EH nằm giữa EA và EK 

=> EH là phân giác của góc AEK (đn)

4 tháng 7 2016

  Câu c: 
Ta có: tam giác ABE = tam giác KBE (cmt) 
=> AE = KE (2 cạnh tương ứng), mà E thuộc AK (gt) 
=> E là trung điểm của AK (t/c) 
Mà BE vuông góc với AK tại E (gt) 
=> BE là đường trung trực của đoạn AK (t/c) 
Có D thuộc BE => ED là đường trung trực của AK 
=> AD = KD 
=> tam giác ADK cân tại D (dhnb) 
=> góc KAD = góc AKD (t/c) (1) 
Có AH vuông góc với BC tại H (giả thiết) 
DK vuông góc với BC tại K (cmt) 
Từ 2 điều đó => AH // DK (do cùng vuông góc với BC) 
=> góc HAK = góc AKD (2 góc so le trong) (2) 
Từ (1) và (2) => góc KAD = góc HAK (cùng = góc AKD) 
mà tia AK nằm giữa 2 tia AH và AD 
=> AK là tia phân giác góc HAC 
Câu d: 
Có AH cắt BD tại I (gt) => I thuộc BD 
=> I thuộc trung trực của AK 
=> IA = IK (t/c) 
=> Tam giác IAK cân tại I (dhnb) 
=> góc IAK = góc IKA 
mà góc IAK = góc KAD (cmt) 
=> góc IKA = góc KAD (= góc IAK) 
mà góc IKA và góc KAD nằm ở vị trí so le trong 
=> IK // AC (dhnb 2 đường thẳng //) 

4 tháng 7 2016

cảm  ơn nhé