Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha!!!
a.
Ta có:
AB > AC (gt)
=> HB > HC (quan hệ giữa đường xiên và hình chiếu)
b.
Tam giác ABC có:
AB > AC (gt)
=> ACB > ABC (quan hệ giữa góc và cạnh đối diện trong tam giác)
c.
Tam giác ABH vuông tại H có: BAH + ABH = 90 => BAH = 90 - ABH
Tam giác ACH vuông tại H có: CAH + ACH = 90 => CAH = 90 - ACH
mà ACH > ABH (theo câu b)
=> BAH > CAH
Cho tam giác ABC có góc A=90 độ , AB=8cm , AC=6cm
a, tính BC
b, trên cạnh AC lấy điểm E sao cho AE=2cm; trên tia đối tia AB lấy điểm D sao cho AD=AB. Chứng minh tam giác BEC = tam giác DEC
c, chứng minh DE đi qua trung điểm cạnh BC
a) Theo định lý Py-ta-go:
BH2 = AB2 - AH2
CH2 = AC2 - AH2
Mà AB2 > AC2 => BH2 > CH2
b)góc HAB+góc B=90 độ
CAH+C=90 độ
Mà Cgóc >góc B
=> góc CAH<góc HAB
c) Vì AB là trung trực của HM (gt)
=> AH = AM (t/c đường trung trực)
Lại có: AC là trung trực của NH
=> AN = AH (t/c đường trung trực)
=> AM = AN (=AH)
=> ΔAMN cân tại A
a: Xét ΔABC có AB>AC
mà HB,HC lần lượt là hình chiếu của AB,AC trên BC
nên HB>HC
b: ΔABC có AB>AC
nên góc C>góc B
=>90 độ-góc C<90 độ-góc B
=>góc HAC<góc HAB