\(\perp\)BC. Trên đoạn HC lấy điểm D sao cho...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2019

Hình bạn tự vẽ nha!

a) Vì \(AH\perp BC\left(gt\right)\)

=> \(AH\perp BD.\)

Xét 2 \(\Delta\) vuông \(ABH\)\(ADH\) có:

\(\widehat{AHB}=\widehat{AHD}=90^0\) (vì \(AH\perp BD\))

\(BH=DH\left(gt\right)\)

Cạnh AH chung

=> \(\Delta ABH=\Delta ADH\) (cạnh huyền - cạnh góc vuông).

=> \(AB=AD\) (2 cạnh tương ứng).

=> \(\widehat{BAH}=\widehat{DAH}\) (2 góc tương ứng).

=> \(AH\) là tia phân giác của \(\widehat{BAD}.\)

b) Xét 2 \(\Delta\) \(ABH\)\(EDH\) có:

\(BH=DH\left(gt\right)\)

\(\widehat{AHB}=\widehat{EHD}\) (vì 2 góc đối đỉnh)

\(AH=EH\left(gt\right)\)

=> \(\Delta ABH=\Delta EDH\left(c-g-c\right)\)

=> \(\widehat{ABH}=\widehat{EDH}\) (2 góc tương ứng).

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AB\) // \(ED.\)

Chúc bạn học tốt!

30 tháng 12 2019

a, Ta có: AH\(\perp\)BD(gt)

         HB=HD(gt)

\(\Rightarrow\)AH là đường trung trực

\(\Rightarrow\)AB=AD (t/c đường trung trực trong tam giác)

b, Xét tam giác AHB và tam giác EHD có:

\(\widehat{AHB}=\widehat{EHD}=90^0\)(gt)

AH=HE(gt)

BH=HD(GT)

\(\Rightarrow\)Tam giác AHB = Tam giác EHD(c-g-c)

\(\Rightarrow\widehat{BHA}=\widehat{DEH}\)(2 góc tương ứng)

mà chúng có vị trí SLT

\(\Rightarrow\)AB//DE

30 tháng 12 2019

A B C K I H E D 1 1

Cm: a) Xét t/giác ABC có AH là đường cao và AH cũng là đường trung tuyến

=> t/giác ABC cân tại A
=> AB = AD 

(có thể xét hai tam giác để giải)

b) Xét t/giác AHB và t/giác EHD

có BH = HD (gt)

 AH = HE (gt)

  \(\widehat{AHB}=\widehat{EHD}=90^0\)(đối đỉnh)

=> t/giác AHB = t/giác EHD (c.g.c)

=> \(\widehat{A_1}=\widehat{E_1}\)(2 góc t/ứng)

mà 2 góc này ở vị trí so le trong

=> AB // ED

c) Xét t/giác ACE có CH là đường cao

CH cũng là đường trung tuyến

=> t/giác ACE cân tại C

=> \(\widehat{EAC}=\widehat{AEC}\)

Xét t/giác DAE có DH là đường cao

DH cũng là đường trung tuyến

 => DAE cân tại D => AD = DE

=> \(\widehat{DAE}=\widehat{DEA}\)

Ta có: \(\widehat{CAE}=\widehat{CAD}+\widehat{DAE}\)

        \(\widehat{CEA}=\widehat{CED}+\widehat{DEA}\)

mà \(\widehat{CAE}=\widehat{AEC}\) (cmt); \(\widehat{DAE}=\widehat{DEA}\)(cmt)

=> \(\widehat{CAD}=\widehat{CED}\)

Xét t/giác ADI và t/giác EDK

có: AD = DE (cmt)

 \(\widehat{IAD}=\widehat{KED}\) (cmt)

 \(\widehat{IDA}=\widehat{KDE}\) (đối đỉnh)

=> t/giác ADI = t/giác EDK (g.c.g)

=> DI = DK (2 cạnh t/ứng)

d) xem lại đề

3 tháng 5 2018

a) Áp dụng định lý pytago , ta có tam giác ABC vuông tại A, AB = 6cm và AC = 8cm

=> BC2 = AB2 + AC2 = 36+ 64 = 100

=> BC = 10 cm

b) Xét tam giác AHD và tam giác AHB có ;

AH chung

góc AHD = góc AHB

HD = HB

=> tam giác AHD = tam giác AHB ( c.g.c )

=> AB = AD ( 2 cạnh tương ứng )

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

18 tháng 4 2017

bạn ơi đầu bài câuB là sao z, HD=HD

18 tháng 4 2017
THANK YOU!
29 tháng 10 2019

B A C D K H I

a ) Xét \(\Delta AHB\) vuông tại H ta có :

\(\widehat{HBA}+\widehat{HAB}=90^o\) ( hai góc phụ nhau )

\(\widehat{HAB}=90^o-\widehat{HBA}=90^o-60^o=30^o\)

Vậy \(\widehat{HAB}=60^o\)

b ) Xét \(\Delta AHI\) và \(\Delta ADI\)có :

AH = AD (gt)

IH=ID (gt)

AI cạnh chung 

\(\Rightarrow\Delta AHI=\Delta ADI\left(c.c.c\right)\)

Suy ra \(\widehat{HIA}=\widehat{DIA}\) ( hai góc tương ứng )

Mà \(\widehat{HIA}+\widehat{DIA}=180^o\) ( 2gocs kề bùy )

\(\Rightarrow\widehat{HIA}=\widehat{DIA}=90^o\)

Do đó \(AI\perp HD\left(đpcm\right)\)

c ) Vì  \(\Delta AHI=ADI\) ( cm câu b )

\(\Rightarrow\widehat{HAK}=\widehat{DAK}\) ( 2 góc tương ứng )

Xét \(\Delta AHK\) và \(\Delta ADK\) có ;

AH = AD (gt)

\(\widehat{HAK}=\widehat{DAK}\left(cmt\right)\)

AK cạn chung

\(\Rightarrow\Delta AHK=\Delta ADK\left(c.g.c\right)\)

\(\Rightarrow\widehat{AHK}=\widehat{ADK}=90^o\) ( 2 góc tương ứng )

\(\Rightarrow AD\perp AC\)

Mà \(BA\perp AC\left(\Delta ABC\perp A\right)\)

AD//AB ( đpcm)

1) Cho tam giác ABC vuông tại A, vẽ tia phân giác của \(\widehat{ABC}\)cắt AC tại D. Trên cạnh BC lấy M sao cho BA = BM.a) Chứng minh: Tam giác BAD = Tam giác BMDb) Chứng minh: DM vuông góc BCc) Trên nửa mặt phẳng bờ AB không chứa C vẽ tia song song với CA. Trên tia Bx lấy điểm K sao cho BK = AC. Chứng minh: AK vuông góc DMd) Trên tia BA lấy điểm N sao cho BN = BC. Chứng minh: 3 điểm M, D, N thẳng hàng.2) Cho tam giác ABC...
Đọc tiếp

1) Cho tam giác ABC vuông tại A, vẽ tia phân giác của \(\widehat{ABC}\)cắt AC tại D. Trên cạnh BC lấy M sao cho BA = BM.

a) Chứng minh: Tam giác BAD = Tam giác BMD

b) Chứng minh: DM vuông góc BC

c) Trên nửa mặt phẳng bờ AB không chứa C vẽ tia song song với CA. Trên tia Bx lấy điểm K sao cho BK = AC. Chứng minh: AK vuông góc DM

d) Trên tia BA lấy điểm N sao cho BN = BC. Chứng minh: 3 điểm M, D, N thẳng hàng.

2) Cho tam giác ABC có AB < AC. Trên tia AC lấy E sao cho: AE = AB. Gọi H là trung điểm của BE.

a) Chứng minh: AH là tia phân giác của \(\widehat{A}\)

b) Gọi D là giao của AH và BC; Chứng minh: BD = DE

c) Qua E vẽ đường thẳng song song với AD cắt BC tại M. Tính số đo \(\widehat{BEM}\)

d) Trên tia đối của tia BA lấy N sao cho: BN = CE. Chứng minh: 3 điểm E, D, N thẳng hàng

Mong các bạn giúp đỡ!

0
1 tháng 8 2018

a, \(\Delta AHB=\Delta AHC\left(ch-cgv\right)\Rightarrow HB=HC\) (2 cạnh tương ứng)

Theo đề bài tam giác ABC vuông cân tại A nên \(\widehat{ABH}=45^0\) và tính được \(\widehat{BAH}=45^0\)

Tam giác AHB có: \(\widehat{AHB}=90^0\) và \(\widehat{ABH}=\widehat{BAH}=45^0\)

\(\Rightarrow\Delta AHB\) vuông cân tại H \(\Rightarrow HA=HB\)

Vậy HA = HB = HC

b, Sửa lại đề bài: \(BD\perp d\)

Tam giác ABD vuông tại D(gt) \(\Rightarrow\widehat{ABD}+\widehat{BAD}=90^0\) (1)

Ta có: \(\widehat{BAD}+\widehat{BAC}+\widehat{CAE}=180^0\Rightarrow\widehat{BAD}+\widehat{CAE}=90^0\)  (2)\(\left(\widehat{BAC}=90^0\right)\) 

Từ (1) và (2) \(\Rightarrow\widehat{ABD}=\widehat{CAE}\)

\(\Delta ABD=\Delta CAE\left(c.g.c\right)\Rightarrow AD=CE\)( 2 cạnh tương ứng)

Mong bạn hiểu lời giải của mình. Chúc bạn học tốt.