Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
a/Xét tam giác ABC có BN phân giác :
=>AN/NC=AB/BC
=>AN+NC/NC=AB+BC/BC
=>AC/NC=AB+BC/BC
=>9/NC=6+12/12
=>NC=12.9/6+12=6(cm)
=>NA=AC-NC=9-6=3(cm)
b/ Ta có: AM/AB=2/6=1/3
AN/AC=3/9=1/3
=>AM/AB=AN/AC
Xét tam giác AMN và tam giác ABC:
∠A chung;AM/AB=AN/AC
=> MN//BC
A B C M N I K
a) Ta có: MN // BC(gt) => \(\frac{AM}{AB}=\frac{AN}{AC}\)(theo định lí Ta - lét)
=> \(AN=\frac{AM}{AB}.AC=\frac{2,25}{6}\cdot8=3\)(cm)
=> \(CN=AC-AN=8-3=5\)
b) Ta có: MK // BI (gt) => \(\frac{MK}{BI}=\frac{AK}{AI}\)(theo định lí Ta - lét)
NK // IC (gt) => \(\frac{KN}{IC}=\frac{AK}{AI}\)(theo định lí Ta - lét)
=> \(\frac{MK}{BI}=\frac{KN}{IC}\) mà BI = IC (gt)
=> MK = KN => K là trung điểm của MN
c) Do BN là tia p/giác của góc ABC => \(\frac{AB}{BC}=\frac{AN}{NC}\)(t/c đường p/giác của t/giác)
=> \(BC=AB:\frac{AN}{NC}=6:\frac{3}{5}=10\)(cm)
Ta có: BC2 = 102 = 100
AB2 + AC2 = 62 + 82 = 100
=> BC2 = AB2 + AC2 => t/giác ABC vuông tại A (theo định lí Pi - ta - go đảo)
=> SABC = AB.AC/2 = 6.8/2 = 24 (cm2)
Hình bạn tự vẽ nhá
a) Ta có: MB = AB - AM = 6 - 2,25 = 3,75 (cm)
Gọi x là AN
NC là: 8 - x
Vì MN // BC, theo định lý Ta-lét ta có:
AMMB=ANNC⇔2,253,75=x8−x
⇔2,25(8−x)3,75(8−x)=3,75x3,75(8−x)
⇔2,25(8−x)=3,75x
⇔18−2,25x=3,75x
⇔−2,25x−3,75x=−18
⇔−6x=−18
⇔x=−18−6
⇔x=3
Nên NC = 8 - x = 8 - 3 = 5 (cm)
Vậy AN = 3cm, NC = 5cm
b) Ta có: MN // BC (gt) (1)
⇒ MK // BI, theo hệ quả của định lý Ta-lét ta có:
AKAI=MKBI (2)
Từ (1) ⇒ KN // IC, theo hệ quả của định lý Ta-lét ta có:
AKAI=KNIC (3)
Từ (2), (3) ⇒MKBI=KNIC(4)
Mà BI = IC (gt) (5)
Từ (4), (5) ⇒MK=KN
Nên K là trung điểm của MN
Câu 3: 3.5đ. Cho tam giác ABC có AB = 6cm, AC = 8 cm. TRên cạnh AB lấy điểm M sao cho AM = 2,25 cm. Qua M kẻ đường thẳng song song với BC cắt cạnh AC tại N
a) Tính độ dài các đoạn thẳng AN, CN.
b) Gọi I là trung điểm của BC, K là giao điểm của AI và MN. Chứng minh K là trung điểm của MN
. c) Nếu BN là tia phân gíac của góc ABC thì diện tích tam giác ABC là bao nhiêu?
Áp dụng định lý Talet trong \(\Delta ABH\) , ta được :
\(\frac{MK}{BH}=\frac{AK}{AH}\left(1\right)\)
Áp dụng định lí Ta let trong \(\Delta ACH\), ta được :
\(\frac{NK}{CH}=\frac{AK}{AH}\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\): \(\Rightarrow\frac{MK}{BH}=\frac{NK}{CH}\)
Vì H là trung điểm của BC \(\Rightarrow BH=CH\)
\(\Rightarrow MK=NK\)
Mà \(K\in MN\)
\(\Rightarrow K\)là trung điểm của \(MN\left(đpcm\right)\)
a: Xét ΔABC có
M,N lần lượt là trung điểm của AB,AC
=>MN là đường trung bình của ΔABC
=>MN//BC và \(MN=\dfrac{BC}{2}\)
=>\(MN=\dfrac{6}{2}=3\left(cm\right)\)
b:
Xét ΔNAM có NK là phân giác
nên \(\dfrac{MK}{KA}=\dfrac{MN}{NA}\)
=>\(\dfrac{MK}{KA}=\dfrac{BC}{2}:NC=\dfrac{BC}{2NC}\)
=>\(\dfrac{BC}{NC}=\dfrac{2MK}{KA}\left(1\right)\)
Xét ΔNCB có CI là phân giác
nên \(\dfrac{IB}{IN}=\dfrac{BC}{CN}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{2MK}{KA}=\dfrac{IB}{IN}\)