Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a )
Xét tam giác ABM và tam giác ACM có:
BM = MC ( vì M là trung điểm của BC )
AM là cạnh chung
AB = AC ( gt )
=> tam giác ABM = tam giác ACM ( c.c.c )
b) Xét tam giác AEH và tam giác CEM có:
EH = EM (gt)
góc AEM = góc MEC (2 góc đối đỉnh )
AE = EC ( vì E là trung điểm của AC )
=> tam giác AEK = tam giác CEM (c.g.c)
c) Câu này giải thích nhiều mà tớ không có thời gian nên không ghi ra được. Tích hay không tùy cậu
b: Xét ΔDCH và ΔDBA có
\(\widehat{DCH}=\widehat{DBA}\)(hai góc so le trong, CH//AB)
DC=DB
\(\widehat{CDH}=\widehat{BDA}\)(hai góc đối đỉnh)
Do đó: ΔDCH=ΔDBA
=>CH=BA
Xét tứ giác ABHC có
AB//HC
AB=HC
Do đó: ABHC là hình bình hành
=>AC//BH
c: H là trung điểm của CK
=>CH=HK
mà CH=AB
nên AB=KH
Xét tứ giác ABKH có
AB//KH
AB=KH
Do đó: ABKH là hình bình hành
=>AK cắt BH tại trung điểm của mỗi đường
mà M là trung điểm của BH
nên M là trung điểm của AK
=>A,M,K thẳng hàng
a, xét hai tam giác ABM và ACM có AB=AC, MB=MC, AM chung \(\Rightarrow\) ABM=ACM (c.c.c)
b, AB=AC nên ABC là tam giác cân, M là trung điểm BC nên AM vuông góc với BC
c,xét 2 tam giác AEH và CEM có EA=EC, EM=EH, góc MEC= góc HEA nên hai tam giác đó bằng nhau (c.g.c)
d, theo câu c đã có tam giác AEH=CEM nên góc AHE= góc CME. Hai góc này ở vị trí so le nên AH // BC (1)
tiếp tục xét 2 tam giác DKA và DMB, có góc KDA=DBM, DK = DM. Mặt khác ta thấy DMEA là hinhf bình hành nên ME=AD=DB ( do ME cũng là đường trung bình của ABC)
nên suy ra tam giác DKA=DMB suy ra góc AKD=BMD, hai góc này ở vị trí so le nên AK// BC(2)
Từ 1 và 2 suy ra AH và AK cùng nằm trên 1 đường thẳng hay K,H,A thẳng hàng...