Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ^BAC + ^BAK = 180 (kề bù)
^BAC = 135 (gt)
=> ^BAK = 45
xét ΔAKB có : ^AKB = 90
=> ΔAKB vuông cân (dấu hiệu)
b, ^KBC = 90 - ^KCB
^CAH = 90 - ^ACH
=> ^CAH = ^ABK
^CAH = ^KAE (đối đỉnh)
=> ^ABK = ^KAE
xét ΔAKE và ΔBKC có : ^CKB = ^AKE = 90
AK = KB do ΔAKB cân tại K (câu a)
=> ΔAKE = ΔBKC (cgv-gnk)
=> AE = BC (định nghĩa)
c, kẻ MK
xét ΔMNE và ΔMNK có : MN chung
^MNE = ^MNK = 90
NE = NK do N là trung điểm của EK (Gt)
=> ΔMNE = ΔMNK (2cgv)
=> MN = MK (định nghĩa) (1)
^EMN = ^KMN (định nghĩa) (2)
MN ⊥ BE ; CK ⊥ BE => MN // CK (định lí)
=> ^EMN = MCK (đồng vị)
^NMK = ^MKC (so le trong)
và (2)
=> ^MCK = ^MKC
=> ΔMKC cân tại M (dấu hiệu)
=> MK = MC (định nghĩa) và (1)
=> ME = MC mà M nằm giữa C và E
=> M là trung điểm của EC
a) Ta có: \(\widehat{ABC}+\widehat{MBC}=\widehat{ABM}\)(tia BC nằm giữa hai tia BA,BM)
nên \(\widehat{ABC}+\widehat{MBC}=90^0\)(1)
Ta có: \(\widehat{ACB}+\widehat{MCB}=\widehat{ACM}\)(tia CB nằm giữa hai tia CA,CM)
nên \(\widehat{ACB}+\widehat{MCB}=90^0\)(2)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)(3)
Từ (1), (2) và (3) suy ra \(\widehat{MBC}=\widehat{MCB}\)
Xét ΔMBC có \(\widehat{MBC}=\widehat{MCB}\)(cmt)
nên ΔMBC cân tại M(Định lí đảo của tam giác cân)
b) Xét ΔABM vuông tại B và ΔACM vuông tại C có
AB=AC(ΔABC cân tại A)
BM=CM(ΔMBC cân tại M)
Do đó: ΔABM=ΔACM(hai cạnh góc vuông)
⇒\(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)
mà tia AM nằm giữa hai tia AB,AC
nên AM là tia phân giác của \(\widehat{BAC}\)(đpcm)
Ta có: ΔABM=ΔACM(cmt)
nên \(\widehat{BMA}=\widehat{CMA}\)(hai góc tương ứng)
mà tia MA nằm giữa hai tia MB,MC
nên MA là tia phân giác của \(\widehat{BMC}\)(đpcm)
c) Ta có: AB=AC(ΔABC cân tại A)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(4)
Ta có: MB=MC(ΔMBC cân tại M)
nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(5)
Từ (4) và (5) suy ra AM là đường trung trực của BC
hay AM⊥BC(đpcm)
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(Hai cạnh tương ứng)