K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2017

Bạn tự vẽ hình nhé

a,Kẻ BK vuông góc với AC, đặt BK = h

tam giác ABK có K vuông => sin A = h/c => a/sin A = ac/h (1)

tam giác BKC có K vuông => sin C = h/a => c/sin C = ac/h (2)

Từ (1) và (2) => a/sin A = c/sin C

CMTT có b/sinB = c/sin C

=> dpcm

b, có SABC = (h.b)/2

mà h = a.sinC \(\Rightarrow S_{ABC}=\dfrac{a.sinC.b}{2}\) = \(\dfrac{1}{2}a.b.sinC\)

CMTT có \(S_{ABC}=\dfrac{1}{2}a.c.sinB=\dfrac{1}{2}b.c.sinA\)

=> đpcm

17 tháng 8 2018

đây nha bn : https://hoc24.vn/hoi-dap/question/639032.html

17 tháng 8 2018

bạn ơi mình nhấn không được

7 tháng 11 2017

bạn áp dụng hệ thức lượng trong tam giác vuông nha

7 tháng 11 2017

Phải là áp dụng tỉ số lượng giác của góc nhọn chứ bạn?

23 tháng 7 2017

A B C c H b a h

kẻ AH vuông góc với BC 

đặt AH = h . xét hai tam giác vuông AHB và AHC , ta có :

sin B = \(\frac{AH}{AB}\),   sin C = \(\frac{AH}{AC}\)

do đó \(\frac{sinB}{sinC}=\frac{AH}{AB}\cdot\frac{AC}{AH}=\frac{h}{c}\cdot\frac{b}{h}=\frac{b}{c}\)

suy ra \(\frac{b}{sinB}=\frac{c}{sinC}\)

tương tự   \(\frac{a}{sinA}=\frac{b}{sinB}\)

vậy suy ra dpcm

23 tháng 7 2017

cái đường thẳng cắt tam giác đó mk không bt nó thừ đâu tới, bạn bỏ cái đấy đi nhá

AH
Akai Haruma
Giáo viên
2 tháng 3 2018

Lời giải:

Đường tròn

Kéo dài $OA$ cắt $(O)$ tại $D$

Do $AD$ là đường kính nên $ABD$ vuông tại $B$

\(\Rightarrow \sin \widehat{BDA}=\frac{BA}{AD}=\frac{c}{2R}\)

Mà \(\widehat{BDA}=\widehat{BCA}=\widehat{C}\) (cùng chắn cung AB)

Do đó \(\sin C=\sin \widehat{BCA}=\frac{c}{2R}\Leftrightarrow \frac{c}{\sin C}=2R\)

Hoàn toàn tương tự, kẻ đường kính từ B,C ta thu được:

\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R\) (đpcm)

28 tháng 6 2021

Ta có : \(S_{ABC}=\dfrac{1}{2}bc.sinA=\dfrac{1}{2}acSinB=\dfrac{1}{2}abSinC\)

\(\Rightarrow bc.sinA=acSinB=abSinC\)

- Lấy abc chia cho cả 3 vế ta được ĐPCM

Kẻ AH⊥BC

Xét ΔABH vuông tại H có \(AH=c\cdot\sin\widehat{B}\)

Xét ΔACH vuông tại H có \(AH=b\cdot\sin\widehat{C}\)

\(\Leftrightarrow\left\{{}\begin{matrix}c=\dfrac{AH}{\sin\widehat{B}}\\b=\dfrac{AH}{\sin\widehat{C}}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\sin\widehat{B}=\dfrac{AH}{c}\\\sin\widehat{C}=\dfrac{AH}{b}\end{matrix}\right.\Leftrightarrow\dfrac{c}{\sin\widehat{C}}=\dfrac{b}{\sin\widehat{B}}\)(1)

Kẻ BK⊥AC

Cm tương tự, ta được: \(\dfrac{a}{\sin\widehat{A}}=\dfrac{c}{\sin\widehat{C}}\)(2)

Từ (1), (2) suy ra đpcm

 

Kẻ AH⊥BC tại H, BK⊥AC tại K

Xét ΔAHB vuông tại H có 

\(\sin\widehat{B}=\dfrac{AH}{AB}\)

Xét ΔAHC vuông tại H có

\(\sin\widehat{C}=\dfrac{AH}{AC}\)

Ta có: \(\dfrac{\sin\widehat{B}}{\sin\widehat{C}}=\dfrac{AH}{AB}\cdot\dfrac{AC}{AH}=\dfrac{AC}{AB}=\dfrac{b}{c}\)

\(\Leftrightarrow\dfrac{b}{\sin\widehat{B}}=\dfrac{c}{\sin\widehat{C}}\)(1)

Xét ΔABK vuông tại K có 

\(\sin\widehat{A}=\dfrac{BK}{AB}\)

Xét ΔBCK vuông tại K có 

\(\sin\widehat{C}=\dfrac{BK}{BC}\)

Ta có: \(\dfrac{\sin\widehat{A}}{\sin\widehat{C}}=\dfrac{BK}{AB}\cdot\dfrac{BC}{BK}=\dfrac{BC}{AB}=\dfrac{a}{c}\)

\(\Leftrightarrow\dfrac{a}{\sin\widehat{A}}=\dfrac{c}{\sin\widehat{C}}\)(2)

Từ (1) và (2) suy ra \(\dfrac{a}{\sin\widehat{A}}=\dfrac{b}{\sin\widehat{B}}=\dfrac{c}{\sin\widehat{C}}\)

16 tháng 9 2021

\(a,\) Kẻ \(BH\perp AC;CK\perp AB\)

\(\Delta ACK\) vuông tại K có \(CK=b\cdot\sin A\)

\(\Delta BKC\) vuông tại H có \(CK=a\cdot\sin B\)

\(\Rightarrow b\cdot\sin A=a\cdot\sin B\\ \Rightarrow\dfrac{a}{\sin A}=\dfrac{b}{\sin B}\left(1\right)\)

Cmtt ta được \(a\cdot\sin C=c\cdot\sin A\left(=BH\right)\)

\(\Rightarrow\dfrac{a}{\sin A}=\dfrac{c}{\sin C}\left(2\right)\)

\(\left(1\right)\left(2\right)\RightarrowĐpcm\)

\(b,\) Không thể suy ra đẳng thức

16 tháng 9 2021

Vì sao không thể suy ra hằng đẳng thức  bạn

a) Xét ΔABC vuông tại A có

\(\left\{{}\begin{matrix}\sin\widehat{A}=\dfrac{BC}{BC}=1\\\sin\widehat{B}=\dfrac{AC}{BC}\\\sin\widehat{C}=\dfrac{AB}{BC}\end{matrix}\right.\)

Ta có: \(\dfrac{BC}{\sin\widehat{A}}=\dfrac{BC}{1}=BC\)

\(\dfrac{AC}{\sin\widehat{B}}=\dfrac{AC}{\dfrac{AC}{BC}}=BC\)

\(\dfrac{AB}{\sin\widehat{C}}=\dfrac{AB}{\dfrac{AB}{BC}}=BC\)

Do đó: \(\dfrac{BC}{\sin\widehat{A}}=\dfrac{AC}{\sin\widehat{B}}=\dfrac{AB}{\sin\widehat{C}}\)

b) Ta có: \(2\cdot AB\cdot AC\cdot\cos\widehat{A}\)

\(=2\cdot AB\cdot AC\cdot0\)

=0

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=AB^2+AC^2+2\cdot AB\cdot AC\cdot\cos\widehat{A}\)